Instagram Reels Scraper Auto Poster 使用教程
1. 项目介绍
Instagram Reels Scraper Auto Poster 是一个开源工具,旨在帮助用户从多个来源快速抓取 Reels 视频,并自动上传到他们的 Instagram 账户。这个工具由 Avnsh1111 创建,是一个强大的 GitHub 仓库,支持从指定的 Instagram 账户和 YouTube 频道抓取 Reels 和 Shorts,并自动发布到你的 Instagram 账户。通过这个工具,你可以轻松地从你喜欢的创作者那里获取最新内容,并与你的粉丝分享,从而增强你的 Instagram 影响力并促进账户增长。
2. 项目快速启动
2.1 安装 Python
确保你的系统上安装了 Python 3.11 或更高版本。你可以从 Python 官方网站 下载并安装。
2.2 克隆仓库
打开终端并运行以下命令来克隆仓库到你的机器上:
git clone https://github.com/Avnsh1111/Instagram-Reels-Scraper-Auto-Poster.git
2.3 进入项目目录
进入 Instagram-Reels-Scraper-Auto-Poster 目录:
cd Instagram-Reels-Scraper-Auto-Poster
2.4 安装依赖
使用以下命令安装所需的依赖:
pip install -r requirements.txt
2.5 配置初始设置
进入 src 目录:
cd src
运行 start.py 脚本来启动配置向导:
python start.py
按照提示设置你的 Instagram 凭证、YouTube API 密钥和其他配置设置。完成设置后,app.py 脚本将根据你的配置设置自动运行。
2.6 查看日志
要查看日志,打开 src 目录中的 application.log 文件。
2.7 访问实时仪表盘
要查看实时仪表盘,打开一个新的终端窗口并运行以下命令:
python dashboard.py
你应该会看到实时仪表盘显示有关你上传的 Reels 的信息。
3. 应用案例和最佳实践
3.1 内容创作者
对于内容创作者来说,这个工具可以帮助他们从多个来源抓取有趣的 Reels 视频,并自动上传到他们的 Instagram 账户,从而节省手动搜索和上传的时间。
3.2 社交媒体经理
社交媒体经理可以使用这个工具来自动化 Instagram 内容的发布流程,确保他们的客户账户始终保持活跃并吸引更多的关注者。
3.3 品牌推广
品牌可以使用这个工具来抓取与其产品或服务相关的 Reels 视频,并自动发布到他们的 Instagram 账户,从而提高品牌曝光率和用户参与度。
4. 典型生态项目
4.1 Instagram API
这个项目依赖于 Instagram API 来实现自动上传功能。了解和熟悉 Instagram API 的使用可以帮助你更好地配置和使用这个工具。
4.2 YouTube Data API
为了抓取 YouTube Shorts,这个项目使用了 YouTube Data API。熟悉这个 API 的使用可以帮助你更好地配置 YouTube 相关的设置。
4.3 Python 生态系统
这个项目是基于 Python 开发的,因此熟悉 Python 编程语言和相关的库(如 requests、selenium 等)可以帮助你更好地理解和修改这个工具。
通过以上步骤,你可以快速启动并使用 Instagram Reels Scraper Auto Poster 工具,自动化你的 Instagram Reels 发布流程。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C092
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00