Elasticsearch-py项目中的混合搜索技术演进与Serverless适配方案
在Elasticsearch-py项目中,混合搜索(Hybrid Search)是一种结合传统文本检索(BM25)和向量检索(KNN)的先进搜索技术。这种技术通过融合两种不同检索方式的优势,能够提供更精准、更全面的搜索结果。然而,随着Elasticsearch 8.14+版本的发布,原有的混合搜索实现方式需要进行重要调整以适应新的架构变化。
混合搜索的核心原理
混合搜索的核心思想是同时执行两种不同类型的搜索查询:
- 基于BM25算法的传统文本检索
- 基于KNN的向量相似度检索
然后将两种检索结果通过RRF(Reciprocal Rank Fusion)算法进行融合排序。RRF算法的优势在于能够平衡不同检索方法返回结果的排名差异,生成最终的优化排序结果。
版本演进带来的技术挑战
在Elasticsearch 8.14版本之前,RRF是通过顶层rank查询实现的。但随着8.14+版本的发布,Elasticsearch团队对搜索架构进行了重构:
- 移除了顶层的rank查询支持
- 引入了新的retriever概念
- 将RRF实现移至retriever层面
这一变化对Elasticsearch-py项目中的混合搜索实现产生了直接影响,特别是在Elasticsearch Serverless环境中,原有的实现方式完全失效。
技术解决方案演进
新的解决方案采用retriever-based RRF实现方式,其查询结构发生了本质变化。以下是新旧实现的对比:
传统实现方式(8.14之前): 采用顶层rank查询结合bool查询,分别包含match和knn子查询。
新实现方式(8.14+): 使用retriever.rrf结构,其中包含两个standard retriever:
- 第一个retriever处理传统的BM25文本匹配
- 第二个retriever处理KNN向量搜索
这种新结构不仅解决了Serverless环境的兼容性问题,还代表了Elasticsearch搜索架构的未来发展方向。
实现细节与最佳实践
在实际应用中,开发者需要注意以下关键点:
- 字段映射一致性:确保文本字段和向量字段在mapping中正确定义
- 参数调优:num_candidates等参数需要根据数据规模和性能要求进行调整
- 模型选择:text_embedding模型需要与生成文档向量的模型保持一致
- 结果分析:建议对混合搜索结果进行人工评估,确保RRF融合效果符合预期
未来展望
随着向量搜索技术的普及,混合搜索将成为Elasticsearch生态中的重要组成部分。Elasticsearch-py项目的这一适配不仅解决了当前的技术兼容性问题,也为未来更复杂的多模态搜索场景奠定了基础。开发者可以期待在以下方面的进一步优化:
- 更灵活的retriever组合方式
- 自适应RRF参数调整
- 跨模态搜索支持
- 性能优化和延迟降低
这一技术演进体现了Elasticsearch生态对云原生和Serverless架构的持续投入,也为开发者提供了更强大、更灵活的搜索能力。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00