Elasticsearch-py项目中的混合搜索技术演进与Serverless适配方案
在Elasticsearch-py项目中,混合搜索(Hybrid Search)是一种结合传统文本检索(BM25)和向量检索(KNN)的先进搜索技术。这种技术通过融合两种不同检索方式的优势,能够提供更精准、更全面的搜索结果。然而,随着Elasticsearch 8.14+版本的发布,原有的混合搜索实现方式需要进行重要调整以适应新的架构变化。
混合搜索的核心原理
混合搜索的核心思想是同时执行两种不同类型的搜索查询:
- 基于BM25算法的传统文本检索
- 基于KNN的向量相似度检索
然后将两种检索结果通过RRF(Reciprocal Rank Fusion)算法进行融合排序。RRF算法的优势在于能够平衡不同检索方法返回结果的排名差异,生成最终的优化排序结果。
版本演进带来的技术挑战
在Elasticsearch 8.14版本之前,RRF是通过顶层rank查询实现的。但随着8.14+版本的发布,Elasticsearch团队对搜索架构进行了重构:
- 移除了顶层的rank查询支持
- 引入了新的retriever概念
- 将RRF实现移至retriever层面
这一变化对Elasticsearch-py项目中的混合搜索实现产生了直接影响,特别是在Elasticsearch Serverless环境中,原有的实现方式完全失效。
技术解决方案演进
新的解决方案采用retriever-based RRF实现方式,其查询结构发生了本质变化。以下是新旧实现的对比:
传统实现方式(8.14之前): 采用顶层rank查询结合bool查询,分别包含match和knn子查询。
新实现方式(8.14+): 使用retriever.rrf结构,其中包含两个standard retriever:
- 第一个retriever处理传统的BM25文本匹配
- 第二个retriever处理KNN向量搜索
这种新结构不仅解决了Serverless环境的兼容性问题,还代表了Elasticsearch搜索架构的未来发展方向。
实现细节与最佳实践
在实际应用中,开发者需要注意以下关键点:
- 字段映射一致性:确保文本字段和向量字段在mapping中正确定义
- 参数调优:num_candidates等参数需要根据数据规模和性能要求进行调整
- 模型选择:text_embedding模型需要与生成文档向量的模型保持一致
- 结果分析:建议对混合搜索结果进行人工评估,确保RRF融合效果符合预期
未来展望
随着向量搜索技术的普及,混合搜索将成为Elasticsearch生态中的重要组成部分。Elasticsearch-py项目的这一适配不仅解决了当前的技术兼容性问题,也为未来更复杂的多模态搜索场景奠定了基础。开发者可以期待在以下方面的进一步优化:
- 更灵活的retriever组合方式
- 自适应RRF参数调整
- 跨模态搜索支持
- 性能优化和延迟降低
这一技术演进体现了Elasticsearch生态对云原生和Serverless架构的持续投入,也为开发者提供了更强大、更灵活的搜索能力。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00