Pyparsing中IndentedBlock解析动作重复执行问题解析
在Python解析库pyparsing中,开发者在使用IndentedBlock时可能会遇到一个有趣的现象:当块中的第一个元素定义了解析动作(parse action)时,该动作会被执行两次。本文将深入分析这一现象的原因,并提供有效的解决方案。
问题现象
当使用IndentedBlock构建解析器时,如果块中的第一个元素设置了parse action,这个动作会被意外地执行两次。例如以下代码:
def e1_action(x):
print("entry1")
entry1 = Keyword("entry1").set_parse_action(e1_action)
def e2_action(x):
print("entry2")
entry2 = Keyword("entry2").set_parse_action(e2_action)
entries = IndentedBlock(entry1 | entry2, recursive=True, grouped=True)
header = Keyword("header") + Word(alphanums + "_") + entries
s = """
header foo
entry1
entry2"""
header.parse_string(s)
预期输出应该是:
entry1
entry2
但实际输出却是:
entry1
entry1
entry2
原因分析
这种现象的根本原因在于IndentedBlock的内部实现机制。在解析过程中,IndentedBlock会先尝试解析(try_parse)块中的内容以确定其结构,然后再进行实际的解析。默认情况下,这个尝试解析的过程也会执行parse action,导致动作被重复执行。
具体来说,问题出在IndentedBlock的实现中,它在尝试解析时设置了do_actions=True,这意味着即使在尝试阶段也会执行parse action。当实际解析时,这些动作会再次被执行。
解决方案
pyparsing提供了两种解决这个问题的方法:
-
启用packrat解析: 这是官方推荐的解决方案。packrat解析会缓存解析结果,避免重复解析和重复执行parse action。
ParserElement.enable_packrat()启用packrat后,第一次尝试解析的结果会被缓存,实际解析时直接从缓存中获取结果,不再重复执行parse action。
-
修改IndentedBlock实现: 虽然不推荐直接修改库代码,但理论上可以通过修改
IndentedBlock的实现,在尝试解析时设置do_actions=False来避免这个问题。这种方法需要开发者自行维护修改后的版本,可能带来升级和维护的困难。
最佳实践
对于大多数项目,启用packrat解析是最佳选择,因为:
- 它不仅能解决parse action重复执行的问题
- 还能提高整体解析性能
- 是pyparsing官方支持的功能
- 不需要修改现有解析器结构
需要注意的是,packrat解析会占用更多内存,因为它需要缓存解析结果。但对于大多数现代应用来说,这点内存开销是可以接受的。
总结
理解pyparsing内部解析机制对于构建高效、可靠的解析器非常重要。IndentedBlock中parse action重复执行的问题展示了语法解析中"尝试解析"和"实际解析"两个阶段的区别。通过启用packrat解析,开发者可以优雅地解决这一问题,同时获得性能提升。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C092
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00