Terminal-Bench 开源项目最佳实践教程
2025-05-24 12:13:09作者:裘旻烁
1. 项目介绍
Terminal-Bench 是由 Laude Institute 开发的一个开源项目,旨在为大型语言模型(LLM)提供一个在真实终端环境下的测试基准。这个项目通过一系列的终端任务来评估 AI 代理如何处理现实世界中的端到端任务,如编译代码、训练模型和设置服务器等。Terminal-Bench 包含两部分:一个任务数据集和一个将语言模型连接到终端沙盒的执行框架。
2. 项目快速启动
环境准备
在开始之前,确保您的系统中已经安装了以下依赖:
- Docker
- Python 3.7 或更高版本
uv工具(用于运行 Python 脚本)
克隆项目
git clone https://github.com/laude-institute/t-bench.git
cd t-bench
安装依赖
pip install -r requirements.txt
运行执行框架
安装完成后,您可以通过以下命令运行执行框架:
uv run scripts_python/run_harness.py
如果要指定特定的代理、模型和任务配置,可以使用以下命令:
export ANTHROPIC_API_KEY=<YOUR_KEY>
uv run scripts_python/run_harness.py \
--agent terminus \
--model-name anthropic/claude-3-7-latest \
--dataset-config datasets/terminal-bench-core-v0.yaml \
--n-concurrent-runs 8
请替换 <YOUR_KEY> 为您的 Anthropic API 密钥。
3. 应用案例和最佳实践
创建新任务
创建新任务最简单的方式是使用任务向导。在安装并配置好环境后,运行以下命令:
uv run wizard
这将为您提供一个交互式的界面,指导您创建新的任务。
贡献任务
贡献新任务时,请确保遵循以下最佳实践:
- 任务描述应该清晰、具体。
- 提供的测试脚本能准确验证任务的完成情况。
- 提供参考(Oracle)解决方案,以便他人可以理解任务的要求。
代码审查
在贡献代码之前,请确保代码风格整洁,遵循项目现有的编码标准。使用 pre-commit 插件进行代码格式化和检查:
pre-commit install
pre-commit run --all-files
4. 典型生态项目
Terminal-Bench 作为一个测试基准,可以与多种 AI 代理和模型集成。以下是一些典型的生态项目:
- 模型集成:集成不同的语言模型,如 GPT-3、BERT 等,来评估它们在终端任务中的表现。
- 任务自动化:使用 Terminal-Bench 自动化执行和评估复杂的终端任务。
- 教育研究:在教育领域使用 Terminal-Bench 作为教学工具,帮助学生和研究人员理解 AI 代理的终端任务处理能力。
通过遵循上述最佳实践,您可以更好地利用 Terminal-Bench 项目,为 AI 代理的终端任务处理提供有效的测试和评估。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
694
367
Ascend Extension for PyTorch
Python
240
275
暂无简介
Dart
696
164
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
269
328
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
673
仓颉编译器源码及 cjdb 调试工具。
C++
138
869