Liger-Kernel项目中LLaMA模型logits输出的内存优化技术解析
2025-06-10 19:47:13作者:尤辰城Agatha
背景介绍
在深度学习模型训练过程中,特别是在处理大型语言模型(LLaMA)时,内存消耗一直是一个关键挑战。Liger-Kernel项目针对这一问题进行了多项优化,其中一项重要技术涉及logits输出的处理方式。
logits输出的内存优化机制
Liger-Kernel默认采用了一种巧妙的内存优化策略:不实际生成完整的logits张量。这一设计源于交叉熵损失计算(FLCE)的优化技巧,通过避免logits的显式物化来显著减少内存占用。
技术实现细节
在Liger-Kernel的LLaMA模型实现中,这一优化体现在几个关键方面:
- 默认行为:模型前向传播时不会保留完整的logits输出
- 优化原理:直接计算交叉熵损失,跳过中间logits的存储
- 性能权衡:牺牲了logits的可访问性换取内存效率
实际应用场景
虽然这种优化带来了内存优势,但在某些场景下用户仍需要访问logits数据,例如:
- 训练过程中监控token级别的准确率
- 实现类似OpenAI fine-tuning中的train_mean_token_accuracy指标
- 进行模型输出的详细分析
解决方案
Liger-Kernel提供了灵活的配置选项来满足不同需求:
- 完全优化模式:默认配置,最大内存节省
- 部分优化模式:设置
cross_entropy=True和fused_cross_entropy=False,保留logits但仍有内存优化 - 未来扩展:考虑支持仅提取最大logits值而非完整张量
集成建议
对于使用transformers Trainer的用户,可以通过以下方式更好地集成这些优化选项:
- 扩展TrainingArguments以支持liger_kernel_kwargs参数
- 将这些参数传递给底层的apply_liger_kernel_to_llama函数
- 根据具体需求在训练配置中设置cross_entropy等参数
总结
Liger-Kernel的内存优化设计体现了深度学习系统优化中的典型权衡思维。通过理解这些技术细节,开发者可以根据实际应用场景灵活配置,在内存效率和功能需求之间取得最佳平衡。这种优化思路也值得在其他大型模型训练场景中借鉴和应用。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C095
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
476
3.54 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
223
94
暂无简介
Dart
726
175
React Native鸿蒙化仓库
JavaScript
287
339
Ascend Extension for PyTorch
Python
284
317
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
701
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
441
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19