Blog.Core 项目中 SqlSugarCacheService 缓存清除异常问题解析
问题背景
在 Blog.Core 项目中,当使用 SqlSugar ORM 框架进行数据变更操作时,系统会自动触发缓存清除机制。这一机制在调用 Caching.GetAllCacheKeys() 方法时出现了异常,具体表现为 CreateGetter<TParam, TReturn>(FieldInfo field) 方法中的 field 参数为 null 的情况。
技术分析
该问题本质上是一个反射操作异常,发生在通过反射获取缓存键集合的过程中。深入分析发现:
-
反射机制失效:当项目升级了
Microsoft.Extensions.Caching.Memory版本后,内存缓存内部结构发生了变化,导致原有的反射获取字段的方式不再适用。 -
版本兼容性问题:高版本的缓存组件可能重构了内部实现,破坏了原有的字段结构,使得通过反射获取特定字段的操作失败。
-
缓存清除流程:SqlSugar 在执行数据变更操作后,会自动触发缓存清除逻辑,这是 ORM 框架保证数据一致性的重要机制。
解决方案
针对这一问题,可以采取以下解决方案:
-
版本回退:暂时回退到已知稳定的
Microsoft.Extensions.Caching.Memory版本,确保反射机制能够正常工作。 -
代码适配:修改反射逻辑,适配新版本的内存缓存组件内部结构。这需要:
- 分析新版本缓存组件的内部结构
- 找到替代的字段或属性获取方式
- 修改反射代码以适应新版本
-
异常处理:在反射代码中添加健壮的错误处理机制,确保即使反射失败也不会导致系统崩溃。
最佳实践建议
-
依赖版本管理:在升级关键组件时,应该充分测试所有依赖该组件的功能,特别是那些使用反射等高级特性的部分。
-
反射替代方案:考虑使用更稳定的API替代反射操作,或者为反射操作添加多层保护机制。
-
缓存策略:评估是否真的需要立即清除所有缓存,可以考虑更精细化的缓存清除策略,减少对系统性能的影响。
总结
这个问题展示了在现代化.NET项目中常见的版本兼容性挑战,特别是在使用反射等高级特性时。通过这个问题,我们认识到:
- 组件升级需要全面测试
- 反射操作需要谨慎处理
- 缓存机制的设计需要平衡性能和一致性
对于使用 Blog.Core 项目的开发者来说,理解这些底层机制有助于更好地维护和扩展项目功能。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00