Langfuse与SmolAgents集成中的输入输出字段问题解析
问题背景
在使用Langfuse与OpenTelemetry(OTEL)以及SmolAgents进行集成时,开发人员发现了一个技术问题:当使用SmolAgents的instructor功能时,链式调用中的每个步骤(包括整个调用链)的输入和输出字段都显示为空值。此外,还存在两个相关现象:整个调用链的输入输出token计数未在跟踪概览中显示,以及跟踪记录缺少名称标识。
技术现象分析
通过深入分析,我们发现以下具体技术表现:
-
字段缺失问题:虽然元数据中包含了
attributes.input.value.task和attributes.output.value等字段,但这些信息未能正确映射到Langfuse的跟踪界面中。 -
Token计数问题:虽然底层数据包含了
llm.token_count.prompt、total和completion等token计数信息,但这些关键指标未能正确提取并展示在跟踪概览中。 -
跟踪命名问题:生成的跟踪记录缺少有意义的名称标识,降低了跟踪数据的可读性和可管理性。
解决方案
Langfuse团队迅速响应并部署了修复方案:
-
语义解析逻辑适配:团队更新了Langfuse的解析逻辑,使其能够正确识别和处理SmolAgents特有的语义结构。
-
属性映射增强:完善了属性映射机制,确保包括输入输出内容和token计数在内的所有关键信息都能正确提取和展示。
-
跟踪命名优化:改进了跟踪记录的命名机制,使其能够自动生成更有意义的名称。
技术实现建议
对于需要在生产环境中使用此集成的开发者,建议:
-
版本更新:确保使用包含此修复的最新版本Langfuse。
-
配置验证:重新验证OpenTelemetry和SmolAgents的集成配置,确保所有环境变量和参数设置正确。
-
数据校验:在集成后,进行全面的功能测试,验证输入输出字段、token计数等关键信息的正确展示。
总结
此次问题的快速解决体现了Langfuse团队对开发者体验的重视。通过不断完善对各种AI开发框架和工具链的集成支持,Langfuse正在成为AI应用开发和监控领域的重要基础设施。开发者可以期待未来更丰富、更稳定的集成功能,帮助团队更好地理解和优化AI应用的运行表现。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00