Langfuse与SmolAgents集成中的输入输出字段问题解析
问题背景
在使用Langfuse与OpenTelemetry(OTEL)以及SmolAgents进行集成时,开发人员发现了一个技术问题:当使用SmolAgents的instructor功能时,链式调用中的每个步骤(包括整个调用链)的输入和输出字段都显示为空值。此外,还存在两个相关现象:整个调用链的输入输出token计数未在跟踪概览中显示,以及跟踪记录缺少名称标识。
技术现象分析
通过深入分析,我们发现以下具体技术表现:
-
字段缺失问题:虽然元数据中包含了
attributes.input.value.task
和attributes.output.value
等字段,但这些信息未能正确映射到Langfuse的跟踪界面中。 -
Token计数问题:虽然底层数据包含了
llm.token_count.prompt
、total
和completion
等token计数信息,但这些关键指标未能正确提取并展示在跟踪概览中。 -
跟踪命名问题:生成的跟踪记录缺少有意义的名称标识,降低了跟踪数据的可读性和可管理性。
解决方案
Langfuse团队迅速响应并部署了修复方案:
-
语义解析逻辑适配:团队更新了Langfuse的解析逻辑,使其能够正确识别和处理SmolAgents特有的语义结构。
-
属性映射增强:完善了属性映射机制,确保包括输入输出内容和token计数在内的所有关键信息都能正确提取和展示。
-
跟踪命名优化:改进了跟踪记录的命名机制,使其能够自动生成更有意义的名称。
技术实现建议
对于需要在生产环境中使用此集成的开发者,建议:
-
版本更新:确保使用包含此修复的最新版本Langfuse。
-
配置验证:重新验证OpenTelemetry和SmolAgents的集成配置,确保所有环境变量和参数设置正确。
-
数据校验:在集成后,进行全面的功能测试,验证输入输出字段、token计数等关键信息的正确展示。
总结
此次问题的快速解决体现了Langfuse团队对开发者体验的重视。通过不断完善对各种AI开发框架和工具链的集成支持,Langfuse正在成为AI应用开发和监控领域的重要基础设施。开发者可以期待未来更丰富、更稳定的集成功能,帮助团队更好地理解和优化AI应用的运行表现。
- QQwen3-Omni-30B-A3B-InstructQwen3-Omni是多语言全模态模型,原生支持文本、图像、音视频输入,并实时生成语音。00
- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0269get_jobs
💼【AI找工作助手】全平台自动投简历脚本:(boss、前程无忧、猎聘、拉勾、智联招聘)Java00AudioFly
AudioFly是一款基于LDM架构的文本转音频生成模型。它能生成采样率为44.1 kHz的高保真音频,且与文本提示高度一致,适用于音效、音乐及多事件音频合成等任务。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile08
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









