Langfuse与SmolAgents集成中的输入输出字段问题解析
问题背景
在使用Langfuse与OpenTelemetry(OTEL)以及SmolAgents进行集成时,开发人员发现了一个技术问题:当使用SmolAgents的instructor功能时,链式调用中的每个步骤(包括整个调用链)的输入和输出字段都显示为空值。此外,还存在两个相关现象:整个调用链的输入输出token计数未在跟踪概览中显示,以及跟踪记录缺少名称标识。
技术现象分析
通过深入分析,我们发现以下具体技术表现:
-
字段缺失问题:虽然元数据中包含了
attributes.input.value.task和attributes.output.value等字段,但这些信息未能正确映射到Langfuse的跟踪界面中。 -
Token计数问题:虽然底层数据包含了
llm.token_count.prompt、total和completion等token计数信息,但这些关键指标未能正确提取并展示在跟踪概览中。 -
跟踪命名问题:生成的跟踪记录缺少有意义的名称标识,降低了跟踪数据的可读性和可管理性。
解决方案
Langfuse团队迅速响应并部署了修复方案:
-
语义解析逻辑适配:团队更新了Langfuse的解析逻辑,使其能够正确识别和处理SmolAgents特有的语义结构。
-
属性映射增强:完善了属性映射机制,确保包括输入输出内容和token计数在内的所有关键信息都能正确提取和展示。
-
跟踪命名优化:改进了跟踪记录的命名机制,使其能够自动生成更有意义的名称。
技术实现建议
对于需要在生产环境中使用此集成的开发者,建议:
-
版本更新:确保使用包含此修复的最新版本Langfuse。
-
配置验证:重新验证OpenTelemetry和SmolAgents的集成配置,确保所有环境变量和参数设置正确。
-
数据校验:在集成后,进行全面的功能测试,验证输入输出字段、token计数等关键信息的正确展示。
总结
此次问题的快速解决体现了Langfuse团队对开发者体验的重视。通过不断完善对各种AI开发框架和工具链的集成支持,Langfuse正在成为AI应用开发和监控领域的重要基础设施。开发者可以期待未来更丰富、更稳定的集成功能,帮助团队更好地理解和优化AI应用的运行表现。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C037
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0115
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00