LLMs-from-scratch项目中的数据采样窗口步长问题解析
2025-05-01 07:27:36作者:吴年前Myrtle
在构建语言模型时,数据采样窗口的设计是一个关键环节。rasbt/LLMs-from-scratch项目中关于滑动窗口采样策略的讨论揭示了几个重要的技术细节。
滑动窗口采样策略
在语言模型训练中,我们通常使用滑动窗口技术将长文本分割成固定长度的序列。这个过程涉及两个关键参数:
- max_length:窗口大小,决定每个训练样本的长度
- stride:步长,决定窗口每次移动的距离
最初的项目实现中,作者采用了stride = max_length + 1的策略。这种设计确保了相邻窗口之间不会有任何重叠,包括输入序列和目标序列。从理论上讲,这可以减少训练数据中的冗余信息,降低过拟合风险。
技术优化与调整
经过实践验证,作者发现stride = max_length的设定已经足够。这种调整意味着:
- 输入序列之间不会有重叠
- 目标序列会有少量重叠(最后一个token会出现在下一个窗口的第一个位置)
- 计算效率更高,因为减少了数据冗余
这种优化既保持了模型性能,又提高了训练效率。值得注意的是,在实际应用中,这种微小的重叠对模型训练的影响可以忽略不计。
实现细节的一致性
项目中存在几个需要注意的实现细节:
- 函数命名差异:书中使用create_dataloader,而代码中使用create_dataloader_v1
- 参数设置差异:不同章节的代码示例中stride参数设置不完全一致
这些差异主要是由于项目迭代更新过程中,代码优化与文档更新之间存在时间差。对于使用者来说,建议采用最新的代码实现(stride = max_length)以获得最佳效果。
技术启示
这个案例给我们几个重要启示:
- 在深度学习项目中,即使是看似微小的参数调整也可能影响模型性能
- 文档与代码同步更新是维护开源项目的重要挑战
- 实践验证是优化超参数的最佳方式,理论假设需要经过实验检验
对于语言模型开发者来说,理解数据采样策略的细节至关重要,这直接影响到模型训练的效率和质量。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
25
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
414
3.19 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
Ascend Extension for PyTorch
Python
229
259
暂无简介
Dart
680
160
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
326
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
React Native鸿蒙化仓库
JavaScript
265
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
493