在MacOS上部署OpenBMB/OmniLMM 2.6版本的技术指南
问题背景
在MacOS系统上部署OpenBMB/OmniLMM 2.6版本时,开发者遇到了两个主要的技术障碍:首先是编译过程中出现的'cblas.h'文件未找到错误,其次是运行时的"invalid logits id"错误。本文将详细分析问题原因并提供完整的解决方案。
环境准备
在开始部署前,请确保您的系统满足以下要求:
- MacOS 14.5或更高版本(建议15.0 Beta以上)
- 已安装Homebrew包管理器
- 已安装Go 1.22.6或更高版本
- 已安装CMake和GCC编译器
部署步骤
-
克隆代码仓库
git clone -b minicpm-v2.6 https://github.com/OpenBMB/ollama.git cd ollama/llm git clone -b minicpmv-main https://github.com/OpenBMB/llama.cpp.git cd ../ -
安装必要依赖
brew install go cmake gcc openblas
解决'cblas.h'文件未找到错误
这个问题的根源在于MacOS系统对BLAS库的特殊处理方式。苹果系统自带了Accelerate框架,其中包含了优化过的BLAS实现,但系统会阻止使用第三方BLAS库。
解决方案
-
定位正确的头文件路径:
- 传统OpenBLAS路径:
/opt/homebrew/Cellar/openblas/0.3.27/include - 系统Accelerate框架路径:
/Library/Developer/CommandLineTools/SDKs/MacOSX14.4.sdk/System/Library/Frameworks/Accelerate.framework/Versions/A/Frameworks/vecLib.framework/Versions/A/Headers
- 传统OpenBLAS路径:
-
修改
llm/llama.cpp/CMakeLists.txt文件,添加以下内容:# Include directories include_directories(/Library/Developer/CommandLineTools/SDKs/MacOSX14.4.sdk/System/Library/Frameworks/Accelerate.framework/Versions/A/Frameworks/vecLib.framework/Versions/A/Headers)注意:某些情况下CMakeLists.txt会被自动重写,如果发现修改被还原,可以尝试在修改后立即执行编译命令。
解决链接错误
在执行go build .时,可能会遇到关于_openblas_set_num_threads符号未定义的错误。这是因为链接器没有正确找到BLAS实现。
解决方案
设置环境变量,强制使用系统Accelerate框架:
export CGO_LDFLAGS="-framework Accelerate"
然后重新执行构建命令。
运行时"invalid logits id"错误
即使成功编译,运行时仍可能出现"llama_get_logits_ith: invalid logits id 10, reason: no logits"的错误。这是当前版本的一个已知问题,与模型推理过程中的logits处理逻辑有关。
临时解决方案
目前社区仍在积极解决这个问题,可以尝试以下方法:
- 回退到2.5版本(如果功能满足需求)
- 关注项目更新,等待官方修复
- 尝试使用webdemo替代方案
最佳实践建议
-
系统版本选择:建议使用MacOS 15.0 Beta或更高版本,苹果在这些版本中对BLAS支持做了优化。
-
环境隔离:考虑使用虚拟环境或容器技术来隔离部署环境,避免系统库冲突。
-
编译顺序:确保按照正确的顺序执行命令:
go generate ./... go build . -
调试技巧:如果遇到问题,可以尝试:
- 清理之前的构建产物
- 检查各依赖库的版本兼容性
- 查看详细的构建日志(添加-v参数)
总结
在MacOS上部署OpenBMB/OmniLMM 2.6版本虽然存在一些技术挑战,但通过正确配置BLAS库路径和链接选项,可以成功完成编译。运行时logits问题需要等待官方修复。建议开发者保持对项目更新的关注,并及时应用最新的修复补丁。
对于生产环境部署,建议在问题完全解决前暂时使用稳定版本,或考虑使用其他兼容性更好的部署方案。随着苹果对机器学习框架支持的不断改进,未来在MacOS上的部署体验有望得到进一步提升。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00