LoopBack数据模型定义语言(LDL)完全指南
2025-06-04 21:59:28作者:劳婵绚Shirley
前言
LoopBack数据源Juggler中的模型定义语言(LDL)是定义数据模型的核心工具。本文将全面解析LDL的语法特性、使用场景和最佳实践,帮助开发者高效构建LoopBack应用的数据模型层。
什么是LDL
LDL(LoopBack Definition Language)是一种简洁的领域特定语言,用于在JavaScript或JSON中定义数据模型。它提供了:
- 类型系统:支持基本数据类型和复杂类型
- 模型继承:支持模型间的继承关系
- 关系定义:支持多种模型关联方式
- 数据约束:支持字段级验证规则
- 数据映射:支持与底层数据源的映射配置
基础模型定义
简单JSON定义
{
"id": "number",
"firstName": "string",
"lastName": "string"
}
这个模型定义了三个属性:
id: 数字类型firstName: 字符串类型lastName: 字符串类型
JavaScript定义
var UserDefinition = {
id: Number,
firstName: String,
lastName: String
}
JavaScript版本更为简洁,直接使用类型构造函数。
支持的基本类型
LDL支持以下基本类型:
- String/Text
- Number
- Boolean
- Array
- Object
- Date
- Buffer/Binary
- GeoPoint
类型名称不区分大小写,"Number"和"number"等效。
模型构造器创建
使用ModelBuilder将定义转换为可用的模型构造器:
var ModelBuilder = require('loopback-datasource-juggler').ModelBuilder;
var modelBuilder = new ModelBuilder();
var User = modelBuilder.define('User', {
id: Number,
firstName: String,
lastName: String
});
var user = new User({id: 1, firstName: 'John', lastName: 'Smith'});
模型行为扩展
数据源注入方法
var DataSource = require('loopback-datasource-juggler').DataSource;
var ds = new DataSource('memory');
var User = ds.define('User', UserDefinition);
User.create({id: 1, firstName: 'John', lastName: 'Smith'}, function(err, user) {
// CRUD操作
});
手动添加方法
// 静态方法
User.findByLastName = function(lastName, cb) {
User.find({where: {lastName: lastName}}, cb);
};
// 实例方法
User.prototype.getFullName = function() {
return this.firstName + ' ' + this.lastName;
};
高级模型配置
模型级选项
{
"name": "User",
"options": {
"strict": true, // 是否严格模式
"idInjection": false, // 是否自动注入id
"plural": "users" // 复数形式
},
"properties": {...}
}
属性定义进阶
{
"id": {
"type": "number",
"id": true,
"doc": "用户ID"
},
"firstName": {
"type": "string",
"required": true,
"oracle": {
"column": "FIRST_NAME",
"type": "VARCHAR(32)"
}
}
}
复合ID
var InventoryDefinition = {
productId: {type: String, id: 1},
locationId: {type: String, id: 2},
qty: Number
}
模型关系
一对一关系 (belongsTo)
Order.belongsTo(Customer);
// 使用方式
order.customer(callback);
一对多关系 (hasMany)
Customer.hasMany(Order, {as: 'orders', foreignKey: 'customerId'});
// 使用方式
customer.orders(filter, callback);
多对多关系 (hasAndBelongsToMany)
User.hasAndBelongsToMany('groups', {model: Group, foreignKey: 'groupId'});
// 使用方式
user.groups(callback);
通过中间表的多对多 (hasMany through)
Physician.hasMany(Patient, {through: Appointment});
Patient.hasMany(Physician, {through: Appointment});
模型继承与混入
继承
var Customer = User.extend('customer', {
accountId: String,
vip: Boolean
});
混入
var TimeStamp = modelBuilder.define('TimeStamp', {
created: Date,
modified: Date
});
User.mixin(TimeStamp);
最佳实践
- 命名规范:模型名使用单数形式,属性名使用小驼峰
- 严格模式:生产环境建议启用严格模式
- 文档注释:为重要属性添加doc描述
- 关系设计:根据业务需求选择合适的关系类型
- 类型选择:精确选择数据类型,如Date而非字符串存储时间
总结
LoopBack的模型定义语言提供了强大而灵活的方式来定义数据模型。通过本文的介绍,开发者可以掌握从基础模型定义到复杂关系配置的全套技能,为构建健壮的LoopBack应用打下坚实基础。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-7BSpark-Prover-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile015
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 2023年最新HTMLCSSJS组件库:提升前端开发效率的必备资源 Qt控件CSS样式实例大全 - 打造现代化GUI界面的终极指南 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
306
2.7 K
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
136
165
React Native鸿蒙化仓库
JavaScript
233
309
暂无简介
Dart
598
130
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
630
230
仓颉编译器源码及 cjdb 调试工具。
C++
123
671
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.06 K
615
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
196
72
仓颉编程语言测试用例。
Cangjie
36
672