Stable Diffusion WebUI DirectML 中 ControlNet ONNX Runtime 问题的分析与解决
2025-07-04 03:27:23作者:魏侃纯Zoe
问题背景
在 Stable Diffusion WebUI DirectML 项目中,用户从 v1.9.3-amd-30-gee49046 升级到 v1.10.1-amd-2-g395ce8dc 版本后,发现 ControlNet 的 IP-Adapter 功能(特别是 ip-adapter-faceid-plusv2_sd15 模型)无法正常工作。错误日志显示与 ONNX Runtime 初始化相关的 CUDA 调用失败。
技术分析
错误根源
从错误日志中可以观察到几个关键点:
- CUDNN_STATUS_INTERNAL_ERROR:这表明在尝试初始化 ONNX Runtime 时,CUDA 深度神经网络库(cuDNN)内部出现了问题。
- cudnnSetStream 调用失败:具体是在设置 CUDA 流时发生的错误,这通常与 GPU 资源分配或兼容性问题有关。
- ONNX Runtime 初始化异常:错误发生在 ONNX Runtime 尝试使用 CUDA 执行提供程序时。
深层原因
这个问题实际上与 AMD GPU 的特殊性有关。虽然项目名称为 DirectML,但用户实际上使用的是通过 Pinokio 安装的版本,而 Pinokio 并不完全支持 AMD WebUI 与 ZLUDA 的组合。ZLUDA 是一个能让 CUDA 代码在 AMD GPU 上运行的技术,比 DirectML 有更好的性能表现。
解决方案
推荐方案
-
使用专为 AMD GPU 优化的安装方式:
- 避免使用 Pinokio 安装,而是采用专门针对 AMD GPU 的安装指南
- 使用 ZLUDA 替代 DirectML,因为 ZLUDA 对支持的 AMD GPU 性能更好
-
跳过 ONNX Runtime 安装:
- 对于 ZLUDA 版本,ONNX Runtime 不是必需的组件
- 在安装时可以使用 --skip-ort 参数跳过 ONNX Runtime 的安装
版本兼容性建议
- 如果必须使用 ControlNet 的 IP-Adapter 功能,可以考虑暂时回退到 v1.9.3-amd-30-gee49046 版本
- 等待后续版本修复 ONNX Runtime 在 AMD GPU 上的兼容性问题
技术建议
对于 AMD GPU 用户,建议:
- 了解硬件限制:不是所有 AMD GPU 都完全支持所有深度学习工作流,特别是在使用某些特定的预处理模型时
- 选择正确的技术栈:根据 GPU 型号选择最适合的技术方案(ZLUDA 或 DirectML)
- 关注版本更新:AMD GPU 在深度学习领域的支持正在不断改进,及时关注项目更新可以避免许多兼容性问题
总结
这个问题本质上是由于 AMD GPU 在特定环境下的兼容性问题导致的。通过采用正确的安装方式和技术方案,可以避免此类问题并获得更好的性能表现。对于依赖 ControlNet IP-Adapter 功能的用户,建议遵循专门的 AMD GPU 安装指南,而不是使用通用的安装方法。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
525
3.72 K
Ascend Extension for PyTorch
Python
329
391
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
877
578
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
162
暂无简介
Dart
764
189
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
746
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
React Native鸿蒙化仓库
JavaScript
302
350