Langchainrb项目中使用AI兼容服务的嵌入模型问题解析
在Langchainrb项目中,开发者经常会遇到需要调用各种兼容AI API的服务进行文本嵌入操作的情况。本文将从技术角度深入分析这一常见问题及其解决方案。
问题背景
当开发者尝试在Langchainrb项目中配置AI客户端以使用第三方兼容服务(如Together.ai、Ollama等)时,可能会遇到嵌入模型维度获取失败的问题。核心原因在于Langchainrb的AI实现中硬编码了部分模型维度信息,而第三方服务的自定义模型不在预设列表中。
典型错误场景
开发者配置类似以下代码时:
LangchainrbRails.configure do |config|
config.vectorsearch = Langchain::Vectorsearch::Pgvector.new(
llm: Langchain::LLM::AI.new(
api_key: 'ollama',
llm_options: {uri_base:'http://localhost:11434'},
default_options: {
embeddings_model_name: 'chevalblanc/dmeta-embedding-zh:latest'
}
)
)
end
会遇到"key not found"错误,因为系统无法识别自定义模型的默认维度。
技术原理分析
Langchainrb的AI实现中维护了一个EMBEDDING_SIZES哈希表,存储了已知AI模型的输出维度。当遇到未列出的模型时,系统无法确定输出向量长度,导致操作失败。
相比之下,Ollama的实现采用了更灵活的方式:当遇到未知模型时,会执行一次实际的嵌入操作来探测模型输出维度。
解决方案探讨
对于使用AI兼容服务的场景,有以下几种解决方案:
-
修改Token验证逻辑:移除AI实现中的max token验证,避免因未知模型导致的编码器初始化失败。
-
采用服务专用客户端:对于特定服务如Ollama,使用其专用客户端而非AI兼容接口。
-
扩展模型维度表:在项目中扩展EMBEDDING_SIZES表,添加常用第三方模型的维度信息。
最佳实践建议
-
对于完全兼容AI API的服务,推荐采用第一种方案,修改token验证逻辑以提高兼容性。
-
对于功能差异较大的服务,应使用其原生客户端实现,如Langchain::LLM::Ollama。
-
在Rails项目中,可以通过initializer预先配置好常用模型的维度信息。
示例代码
针对Together.ai服务的正确配置方式:
llm = Langchain::LLM::AI.new(
api_key: 'together_api_key',
llm_options: {uri_base: 'https://api.together.xyz'},
default_options: {
chat_completion_model_name: "Qwen/Qwen1.5-72B",
embeddings_model_name: "WhereIsAI/UAE-Large-V1"
}
)
总结
Langchainrb项目在处理AI兼容服务时,需要特别注意嵌入模型维度的获取机制。理解这一机制后,开发者可以根据实际服务特性选择合适的解决方案,确保文本嵌入功能正常工作。随着兼容AI API的服务越来越多,项目未来的发展方向可能会进一步增强这方面的兼容性处理。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C075
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00