Langchainrb项目中使用AI兼容服务的嵌入模型问题解析
在Langchainrb项目中,开发者经常会遇到需要调用各种兼容AI API的服务进行文本嵌入操作的情况。本文将从技术角度深入分析这一常见问题及其解决方案。
问题背景
当开发者尝试在Langchainrb项目中配置AI客户端以使用第三方兼容服务(如Together.ai、Ollama等)时,可能会遇到嵌入模型维度获取失败的问题。核心原因在于Langchainrb的AI实现中硬编码了部分模型维度信息,而第三方服务的自定义模型不在预设列表中。
典型错误场景
开发者配置类似以下代码时:
LangchainrbRails.configure do |config|
config.vectorsearch = Langchain::Vectorsearch::Pgvector.new(
llm: Langchain::LLM::AI.new(
api_key: 'ollama',
llm_options: {uri_base:'http://localhost:11434'},
default_options: {
embeddings_model_name: 'chevalblanc/dmeta-embedding-zh:latest'
}
)
)
end
会遇到"key not found"错误,因为系统无法识别自定义模型的默认维度。
技术原理分析
Langchainrb的AI实现中维护了一个EMBEDDING_SIZES哈希表,存储了已知AI模型的输出维度。当遇到未列出的模型时,系统无法确定输出向量长度,导致操作失败。
相比之下,Ollama的实现采用了更灵活的方式:当遇到未知模型时,会执行一次实际的嵌入操作来探测模型输出维度。
解决方案探讨
对于使用AI兼容服务的场景,有以下几种解决方案:
-
修改Token验证逻辑:移除AI实现中的max token验证,避免因未知模型导致的编码器初始化失败。
-
采用服务专用客户端:对于特定服务如Ollama,使用其专用客户端而非AI兼容接口。
-
扩展模型维度表:在项目中扩展EMBEDDING_SIZES表,添加常用第三方模型的维度信息。
最佳实践建议
-
对于完全兼容AI API的服务,推荐采用第一种方案,修改token验证逻辑以提高兼容性。
-
对于功能差异较大的服务,应使用其原生客户端实现,如Langchain::LLM::Ollama。
-
在Rails项目中,可以通过initializer预先配置好常用模型的维度信息。
示例代码
针对Together.ai服务的正确配置方式:
llm = Langchain::LLM::AI.new(
api_key: 'together_api_key',
llm_options: {uri_base: 'https://api.together.xyz'},
default_options: {
chat_completion_model_name: "Qwen/Qwen1.5-72B",
embeddings_model_name: "WhereIsAI/UAE-Large-V1"
}
)
总结
Langchainrb项目在处理AI兼容服务时,需要特别注意嵌入模型维度的获取机制。理解这一机制后,开发者可以根据实际服务特性选择合适的解决方案,确保文本嵌入功能正常工作。随着兼容AI API的服务越来越多,项目未来的发展方向可能会进一步增强这方面的兼容性处理。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00