Griptape框架v1.2.0版本发布:向量存储与结构化输出能力升级
Griptape是一个用于构建和运行AI工作流的开源框架,它提供了任务编排、记忆管理、工具集成等核心功能,帮助开发者快速构建复杂的AI应用系统。本次发布的v1.2.0版本带来了多项重要改进,特别是在向量存储查询和结构化输出方面的能力得到了显著增强。
核心功能增强
向量存储查询能力扩展
新版本为BaseVectorStoreDriver增加了query_vector方法,使得开发者可以直接使用向量进行查询,而不仅限于文本查询。这为需要直接操作向量数据的场景提供了更大的灵活性,比如在图像检索、跨模态搜索等应用中。
同时,GriptapeCloudVectorStoreDriver.query()方法也进行了更新,采用了Griptape Cloud API的最新非弃用形态,确保与云端服务的兼容性。LocalVectorStoreDriver修复了返回条目中缺少命名空间的问题,使得本地向量存储的使用更加规范。
结构化输出全面支持
v1.2.0版本在所有Prompt驱动程序中增加了对结构化输出的支持,这是一个重大改进。开发者现在可以通过以下方式利用这一特性:
- 在
PromptTask中设置output_schema来定义期望的输出结构 - 在
Agent级别设置output_schema,这将应用于代理的Prompt任务 - 通过
BasePromptDriver.structured_output_strategy选择结构化输出策略,支持三种模式:native:使用模型原生结构化输出能力tool:通过工具调用方式实现结构化输出rule:基于规则转换输出为结构化格式
这一特性特别适用于需要精确控制AI输出格式的场景,如数据提取、API响应生成等。
辅助驱动改进
Griptape Cloud和OpenAI的Assistant驱动得到了多项改进:
- 自动线程管理:当未提供线程ID时,驱动会自动创建新线程(可通过
auto_create_thread=False禁用) - 线程别名支持:
GriptapeCloudAssistantDriver新增thread_alias参数,可以按别名获取或创建线程 - 元数据返回:响应Artifact现在包含
thread_id等元数据信息 - 修复了驱动覆盖云端Rulesets和Knowledge Bases的问题
任务系统优化
任务系统的位移动操作符现在支持任务列表作为操作数,使得任务编排更加灵活。同时修复了PromptTask.conversation_memory在没有Structure时无法正常工作的问题。
评估引擎改进
EvalEngine现在使用结构化输出来生成评估步骤,这使得评估过程更加规范,结果更加可靠。
问题修复与稳定性提升
本次版本修复了多个影响稳定性的问题:
FuturesExecutorMixin在清理过程中偶尔崩溃的问题BaseChunker过度分块的问题- 直接使用
BaseLoader.parse时reference未设置的问题 - 分块过程中Artifact引用丢失的问题
FootnotePromptResponseRagModule系统提示导致即使有相关块也不回答的问题- 分块器偶尔丢弃后缀分隔符的问题
向后兼容性说明
FuturesExecutorMixin.futures_executor已被标记为弃用,建议改用FuturesExecutorMixin.create_futures_executor方法。开发者应检查代码中是否使用了这一属性,并尽快迁移到新方法。
总结
Griptape v1.2.0通过增强向量存储查询能力和全面支持结构化输出,为构建更复杂、更可靠的AI应用提供了坚实基础。辅助驱动的改进使得与云端服务的集成更加顺畅,而众多稳定性修复则提升了框架的整体可靠性。这些改进使得Griptape在AI工作流编排领域继续保持领先地位,为开发者提供了更强大的工具集。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C098
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00