Griptape框架v1.2.0版本发布:向量存储与结构化输出能力升级
Griptape是一个用于构建和运行AI工作流的开源框架,它提供了任务编排、记忆管理、工具集成等核心功能,帮助开发者快速构建复杂的AI应用系统。本次发布的v1.2.0版本带来了多项重要改进,特别是在向量存储查询和结构化输出方面的能力得到了显著增强。
核心功能增强
向量存储查询能力扩展
新版本为BaseVectorStoreDriver
增加了query_vector
方法,使得开发者可以直接使用向量进行查询,而不仅限于文本查询。这为需要直接操作向量数据的场景提供了更大的灵活性,比如在图像检索、跨模态搜索等应用中。
同时,GriptapeCloudVectorStoreDriver.query()
方法也进行了更新,采用了Griptape Cloud API的最新非弃用形态,确保与云端服务的兼容性。LocalVectorStoreDriver
修复了返回条目中缺少命名空间的问题,使得本地向量存储的使用更加规范。
结构化输出全面支持
v1.2.0版本在所有Prompt驱动程序中增加了对结构化输出的支持,这是一个重大改进。开发者现在可以通过以下方式利用这一特性:
- 在
PromptTask
中设置output_schema
来定义期望的输出结构 - 在
Agent
级别设置output_schema
,这将应用于代理的Prompt任务 - 通过
BasePromptDriver.structured_output_strategy
选择结构化输出策略,支持三种模式:native
:使用模型原生结构化输出能力tool
:通过工具调用方式实现结构化输出rule
:基于规则转换输出为结构化格式
这一特性特别适用于需要精确控制AI输出格式的场景,如数据提取、API响应生成等。
辅助驱动改进
Griptape Cloud和OpenAI的Assistant驱动得到了多项改进:
- 自动线程管理:当未提供线程ID时,驱动会自动创建新线程(可通过
auto_create_thread=False
禁用) - 线程别名支持:
GriptapeCloudAssistantDriver
新增thread_alias
参数,可以按别名获取或创建线程 - 元数据返回:响应Artifact现在包含
thread_id
等元数据信息 - 修复了驱动覆盖云端Rulesets和Knowledge Bases的问题
任务系统优化
任务系统的位移动操作符现在支持任务列表作为操作数,使得任务编排更加灵活。同时修复了PromptTask.conversation_memory
在没有Structure时无法正常工作的问题。
评估引擎改进
EvalEngine
现在使用结构化输出来生成评估步骤,这使得评估过程更加规范,结果更加可靠。
问题修复与稳定性提升
本次版本修复了多个影响稳定性的问题:
FuturesExecutorMixin
在清理过程中偶尔崩溃的问题BaseChunker
过度分块的问题- 直接使用
BaseLoader.parse
时reference
未设置的问题 - 分块过程中Artifact引用丢失的问题
FootnotePromptResponseRagModule
系统提示导致即使有相关块也不回答的问题- 分块器偶尔丢弃后缀分隔符的问题
向后兼容性说明
FuturesExecutorMixin.futures_executor
已被标记为弃用,建议改用FuturesExecutorMixin.create_futures_executor
方法。开发者应检查代码中是否使用了这一属性,并尽快迁移到新方法。
总结
Griptape v1.2.0通过增强向量存储查询能力和全面支持结构化输出,为构建更复杂、更可靠的AI应用提供了坚实基础。辅助驱动的改进使得与云端服务的集成更加顺畅,而众多稳定性修复则提升了框架的整体可靠性。这些改进使得Griptape在AI工作流编排领域继续保持领先地位,为开发者提供了更强大的工具集。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~054CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0377- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









