如何使用YaneuraOu:世界最强将棋AI引擎的完整入门指南 🎯
2026-02-05 05:48:49作者:宣聪麟
YaneuraOu是一款屡获殊荣的将棋AI引擎,曾荣获WCSC29世界冠军,采用先进的深度学习技术和并行搜索算法,为将棋爱好者提供专业级对战体验和教育功能。无论是初学者还是专业棋手,都能通过这款开源引擎提升棋艺,探索将棋的无限可能。
🚀 核心功能亮点
🏆 冠军级对战能力
基于深度神经网络(NNUE)和传统评估函数(KPPT/KPP_KKPT)双重架构,实现毫秒级精准局面评估。支持256线程并行搜索,在复杂局面中也能快速找到最优解。
📚 教育与研究工具
内置局面分析、定跡生成和棋谱记录功能,帮助用户理解AI决策逻辑。提供详细的搜索参数配置,支持自定义评估函数权重,适合AI算法研究者深入探索。
💻 跨平台兼容性
完美支持Windows、Linux、macOS及ARM架构设备,提供预编译版本和源码编译选项。移动端通过JNI接口实现高效运行,随时随地享受对弈乐趣。
YaneuraOu赞助者横幅
⚡ 快速开始指南
🔧 系统要求
- 最低配置:64位CPU(支持SSE2)、4GB内存、100MB存储空间
- 推荐配置:多核CPU(支持AVX2)、16GB内存、NVIDIA GPU(加速深度学习推理)
📥 一键安装步骤
Windows系统
- 从项目仓库克隆源码:
git clone https://gitcode.com/gh_mirrors/ya/YaneuraOu - 运行Visual Studio解决方案:
YaneuraOu.sln - 选择目标平台(x64/AVX2),点击"生成"即可自动编译
Linux/macOS系统
cd YaneuraOu/script
chmod +x mingw_gcc.sh
./mingw_gcc.sh # 自动检测系统环境并编译
🎮 首次运行体验
- 启动引擎后,通过USI协议与将棋GUI连接(推荐ShogiGUI或Bonanza)
- 基础命令示例:
position startpos moves 7g7f 8c8d设置初始局面并添加 movesgo depth 15搜索深度15的最佳走法eval显示当前局面评估值
🛠️ 高级配置指南
⚙️ 性能优化参数
在source/config.h中可调整核心参数:
MAX_PLY_NUM:最大搜索深度(默认246)TT_CLUSTER_SIZE:置换表集群大小(推荐设为4提升缓存效率)USE_AVX2:启用AVX2指令集加速(现代CPU推荐开启)
📊 评估函数选择
根据硬件条件选择合适的评估模式:
- NNUE模式:
#define YANEURAOU_ENGINE_NNUE(需要50-500MB模型文件) - 传统模式:
#define YANEURAOU_ENGINE_KPPT(轻量快速,适合低配置设备) - 深度学习模式:
#define YANEURAOU_ENGINE_DEEP(需TensorRT/ONNX Runtime支持)
📖 实战应用场景
🏫 教学辅助工具
- 使用
help-mate-search模块(old_engines/engines/help-mate-engine/)练习诘将棋 - 通过
policybook功能(source/book/policybook.cpp)学习职业棋手开局策略
🤖 AI研究平台
- 自定义评估函数:修改
source/eval/nnue/下的神经网络架构 - 训练新模型:启用
EVAL_LEARN宏,使用learn命令从棋谱中学习权重
🎯 比赛竞技配置
// tournament优化配置示例(source/config.h)
#define FOR_TOURNAMENT
#define ENABLE_QUICK_DRAW // 简化重复局面检测
#undef ENABLE_TEST_CMD // 禁用调试命令提升性能
📚 资源与支持
📄 官方文档
- 安装指南:docs/最初に:やねうら王遊び方説明.txt
- 命令参考:docs/USI拡張コマンド.txt
- 源码解析:docs/解説.txt
🌟 社区贡献
YaneuraOu开源社区欢迎贡献代码、报告bug或分享使用经验。主要开发方向包括:
- 移动端性能优化
- 新型神经网络架构集成
- 多语言界面支持
🎉 为什么选择YaneuraOu?
作为持续更新的顶级将棋AI,YaneuraOu不仅提供专业级对战体验,更开放全部核心技术供学习研究。其模块化设计允许用户按需定制功能,从休闲对弈到学术研究均能完美适配。立即加入全球10万+将棋爱好者的行列,探索AI与传统棋艺结合的无限可能!
🔍 提示:定期查看docs/更新履歴.txt获取最新功能和性能优化信息
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
528
3.73 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
172
Ascend Extension for PyTorch
Python
337
401
React Native鸿蒙化仓库
JavaScript
302
353
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
883
590
暂无简介
Dart
768
191
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
114
139
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
246