Pandas基础数据处理技巧详解:以纽约餐厅卫生检查数据为例
2025-06-04 08:54:21作者:戚魁泉Nursing
前言
在数据分析领域,Pandas是Python中最强大的数据处理库之一。本文将以ipeirotis/dealing_with_data项目中的纽约餐厅卫生检查数据为例,详细介绍Pandas的基础数据操作技巧,帮助读者快速掌握数据处理的核心方法。
环境准备
在开始数据分析前,我们需要搭建合适的工作环境:
# 安装必要的Python库
!pip3 install -U -q PyMySQL sqlalchemy
# 导入常用数据分析库
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
# 设置图表显示样式
%config InlineBackend.figure_format = 'retina'
matplotlib.style.use(["seaborn-v0_8-talk", "seaborn-v0_8-ticks", "seaborn-v0_8-whitegrid"])
数据获取
我们将从MySQL数据库中获取纽约市餐厅卫生检查数据,这些数据已经过清洗和规范化处理:
# 创建数据库连接
from sqlalchemy import create_engine
from sqlalchemy import text
conn_string = 'mysql+pymysql://{user}:{password}@{host}/{db}?charset=utf8mb4'.format(
host = 'db.ipeirotis.org',
user = 'student',
password = 'dwdstudent2015',
db = 'doh_restaurants',
encoding = 'utf8mb4')
engine = create_engine(conn_string)
数据加载
我们通过SQL查询获取三组关键数据:
- 餐厅基本信息:
sql = '''
SELECT R.CAMIS, R.DBA, R.BUILDING, R.STREET, R.ZIPCODE, R.BORO,
R.CUISINE_DESCRIPTION, R.LATITUDE, R.LONGITUDE, R.NTA
FROM doh_restaurants.restaurants R
'''
with engine.connect() as connection:
restaurants = pd.read_sql(text(sql), con=connection)
- 检查记录:
sql = '''
SELECT R.CAMIS, R.DBA, R.ZIPCODE, R.BORO, R.CUISINE_DESCRIPTION, R.NTA,
I.INSPECTION_DATE, I.INSPECTION_ID,
I.INSPECTION_TYPE, I.SCORE, I.GRADE
FROM restaurants R
JOIN inspections I ON I.CAMIS = R.CAMIS
'''
with engine.connect() as connection:
inspections = pd.read_sql(text(sql), con=connection)
- 违规记录:
sql = '''
WITH latest_inspection AS (
SELECT CAMIS, MAX(INSPECTION_DATE) AS INSPECTION_DATE FROM inspections
GROUP BY CAMIS
)
SELECT R.CAMIS, R.DBA, R.ZIPCODE, R.BORO,
I.INSPECTION_DATE, I.INSPECTION_ID, I.INSPECTION_TYPE,
V.VIOLATION_CODE, I.SCORE, I.GRADE
FROM restaurants R
JOIN latest_inspection L ON R.CAMIS = L.CAMIS
JOIN inspections I ON I.CAMIS = L.CAMIS AND L.INSPECTION_DATE = I.INSPECTION_DATE
JOIN violations V ON I.INSPECTION_ID = V.INSPECTION_ID
'''
with engine.connect() as connection:
violations = pd.read_sql(text(sql), con=connection)
核心数据处理技巧
1. 列选择(filter方法)
在数据分析中,我们经常只需要关注部分列的数据:
# 选择特定列
inspections.filter(items=["DBA", "GRADE", "INSPECTION_DATE"])
# 使用链式操作选择多列并显示前10行
columns = ["CAMIS", "DBA", "GRADE", "INSPECTION_DATE", "SCORE"]
(
inspections
.filter(items=columns)
.head(10)
)
高级列选择技巧:
# 选择包含特定字符串的列
inspections.filter(like='DATE')
# 使用正则表达式选择列
restaurants.filter(regex=r'^C') # 选择所有以C开头的列
2. 列重命名(rename方法)
restaurants.rename(
columns={
"CAMIS": "RESTID",
"DBA": "REST_NAME",
"BUILDING": "STREET_NUM",
"BORO": "BOROUGH"
}
)
3. 行选择(query方法)
# 查询特定餐厅
restaurants.query('DBA == "STARBUCKS"')
# 查询特定违规代码
violations.query('VIOLATION_CODE == "04L"')
# 复杂条件查询
has_mice_10012 = (
violations
.query('VIOLATION_CODE == "04L" and ZIPCODE == "10012"')
.filter(items=['DBA', 'INSPECTION_DATE'])
)
4. 数据去重(drop_duplicates方法)
(
restaurants
.query('CUISINE_DESCRIPTION == "Coffee/Tea" and ZIPCODE == "10012"')
.filter(items=['DBA'])
.drop_duplicates()
)
实战分析案例
案例1:分析有老鼠问题的餐厅
# 获取所有有老鼠问题的餐厅
has_mice = violations.query('VIOLATION_CODE == "04L"')
# 统计最常见的有老鼠问题的餐厅
mice = has_mice["DBA"].value_counts()
# 获取最常见的25家餐厅
top_restaurants = restaurants["DBA"].value_counts().head(25)
# 计算常见餐厅中有老鼠问题的比例
(mice / top_restaurants).dropna()
案例2:分析NYU附近卫生条件差的餐厅
# 获取违规代码描述
with engine.connect() as connection:
sql = "SELECT * FROM doh_restaurants.violation_codes"
codes = pd.read_sql(text(sql), con=connection)
# 查询NYU附近卫生条件差的餐厅
filthy_near_NYU = (
violations
.query('VIOLATION_CODE in ["04K", "04L", "04M", "04N", "04O"]')
.query('ZIPCODE in ["10012", "10003", "10014"]')
.query('INSPECTION_DATE > "2023-01-01"')
.filter(items=['DBA', 'INSPECTION_DATE'])
.sort_values("INSPECTION_DATE", ascending=False)
.drop_duplicates()
)
总结
通过本文的学习,我们掌握了Pandas数据处理的核心技巧:
- 使用filter方法灵活选择需要的列
- 使用rename方法重命名列
- 使用query方法进行条件筛选
- 使用drop_duplicates方法去除重复数据
这些基础技巧是数据分析的基石,掌握它们将为后续更复杂的数据分析工作打下坚实基础。在实际应用中,我们可以将这些技巧组合使用,解决各种数据分析问题。
登录后查看全文
热门项目推荐
cherry-studio
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端TypeScript037RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统Vue0404arkanalyzer
方舟分析器:面向ArkTS语言的静态程序分析框架TypeScript040GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。02CS-Books
🔥🔥超过1000本的计算机经典书籍、个人笔记资料以及本人在各平台发表文章中所涉及的资源等。书籍资源包括C/C++、Java、Python、Go语言、数据结构与算法、操作系统、后端架构、计算机系统知识、数据库、计算机网络、设计模式、前端、汇编以及校招社招各种面经~01openGauss-server
openGauss kernel ~ openGauss is an open source relational database management systemC++0145
热门内容推荐
1 freeCodeCamp计算机基础课程中主板与CPU概念的精确表述 2 freeCodeCamp课程中meta元素的教学优化建议3 freeCodeCamp课程中英语学习模块的提示信息优化建议4 freeCodeCamp课程中事件传单页面的CSS选择器问题解析5 freeCodeCamp课程中CSS可访问性问题的技术解析6 freeCodeCamp正则表达式教学视频中的语法修正7 freeCodeCamp课程中客户投诉表单的事件触发机制解析8 freeCodeCamp挑战编辑器URL重定向问题解析9 freeCodeCamp项目中从ts-node迁移到tsx的技术决策分析10 freeCodeCamp钢琴设计项目中的CSS盒模型设置优化
最新内容推荐
Visual-RFT项目中模型路径差异的技术解析 Microcks在OpenShift上部署Keycloak PostgreSQL的权限问题解析 Beyla项目中的HTTP2连接检测问题解析 RaspberryMatic项目中HmIP-BWTH温控器假期模式设置问题分析 Lets-Plot 库中条形图标签在坐标轴反转时的定位问题解析 BedrockConnect项目版本兼容性问题解析与解决方案 LiquidJS 10.21.0版本新增数组过滤功能解析 Mink项目中Selenium驱动切换iframe的兼容性问题分析 Lichess移动端盲棋模式字符串优化解析 sbctl验证功能JSON输出问题解析
项目优选
收起

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
51
15

React Native鸿蒙化仓库
C++
118
207

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
527
404

openGauss kernel ~ openGauss is an open source relational database management system
C++
63
145

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
391
37

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
98
251

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
297
1.02 K

方舟分析器:面向ArkTS语言的静态程序分析框架
TypeScript
42
40

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
357
341

基于仓颉编程语言构建的 LLM Agent 开发框架,其主要特点包括:Agent DSL、支持 MCP 协议,支持模块化调用,支持任务智能规划。
Cangjie
583
41