Pandas基础数据处理技巧详解:以纽约餐厅卫生检查数据为例
2025-06-04 22:13:58作者:戚魁泉Nursing
前言
在数据分析领域,Pandas是Python中最强大的数据处理库之一。本文将以ipeirotis/dealing_with_data项目中的纽约餐厅卫生检查数据为例,详细介绍Pandas的基础数据操作技巧,帮助读者快速掌握数据处理的核心方法。
环境准备
在开始数据分析前,我们需要搭建合适的工作环境:
# 安装必要的Python库
!pip3 install -U -q PyMySQL sqlalchemy
# 导入常用数据分析库
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
# 设置图表显示样式
%config InlineBackend.figure_format = 'retina'
matplotlib.style.use(["seaborn-v0_8-talk", "seaborn-v0_8-ticks", "seaborn-v0_8-whitegrid"])
数据获取
我们将从MySQL数据库中获取纽约市餐厅卫生检查数据,这些数据已经过清洗和规范化处理:
# 创建数据库连接
from sqlalchemy import create_engine
from sqlalchemy import text
conn_string = 'mysql+pymysql://{user}:{password}@{host}/{db}?charset=utf8mb4'.format(
host = 'db.ipeirotis.org',
user = 'student',
password = 'dwdstudent2015',
db = 'doh_restaurants',
encoding = 'utf8mb4')
engine = create_engine(conn_string)
数据加载
我们通过SQL查询获取三组关键数据:
- 餐厅基本信息:
sql = '''
SELECT R.CAMIS, R.DBA, R.BUILDING, R.STREET, R.ZIPCODE, R.BORO,
R.CUISINE_DESCRIPTION, R.LATITUDE, R.LONGITUDE, R.NTA
FROM doh_restaurants.restaurants R
'''
with engine.connect() as connection:
restaurants = pd.read_sql(text(sql), con=connection)
- 检查记录:
sql = '''
SELECT R.CAMIS, R.DBA, R.ZIPCODE, R.BORO, R.CUISINE_DESCRIPTION, R.NTA,
I.INSPECTION_DATE, I.INSPECTION_ID,
I.INSPECTION_TYPE, I.SCORE, I.GRADE
FROM restaurants R
JOIN inspections I ON I.CAMIS = R.CAMIS
'''
with engine.connect() as connection:
inspections = pd.read_sql(text(sql), con=connection)
- 违规记录:
sql = '''
WITH latest_inspection AS (
SELECT CAMIS, MAX(INSPECTION_DATE) AS INSPECTION_DATE FROM inspections
GROUP BY CAMIS
)
SELECT R.CAMIS, R.DBA, R.ZIPCODE, R.BORO,
I.INSPECTION_DATE, I.INSPECTION_ID, I.INSPECTION_TYPE,
V.VIOLATION_CODE, I.SCORE, I.GRADE
FROM restaurants R
JOIN latest_inspection L ON R.CAMIS = L.CAMIS
JOIN inspections I ON I.CAMIS = L.CAMIS AND L.INSPECTION_DATE = I.INSPECTION_DATE
JOIN violations V ON I.INSPECTION_ID = V.INSPECTION_ID
'''
with engine.connect() as connection:
violations = pd.read_sql(text(sql), con=connection)
核心数据处理技巧
1. 列选择(filter方法)
在数据分析中,我们经常只需要关注部分列的数据:
# 选择特定列
inspections.filter(items=["DBA", "GRADE", "INSPECTION_DATE"])
# 使用链式操作选择多列并显示前10行
columns = ["CAMIS", "DBA", "GRADE", "INSPECTION_DATE", "SCORE"]
(
inspections
.filter(items=columns)
.head(10)
)
高级列选择技巧:
# 选择包含特定字符串的列
inspections.filter(like='DATE')
# 使用正则表达式选择列
restaurants.filter(regex=r'^C') # 选择所有以C开头的列
2. 列重命名(rename方法)
restaurants.rename(
columns={
"CAMIS": "RESTID",
"DBA": "REST_NAME",
"BUILDING": "STREET_NUM",
"BORO": "BOROUGH"
}
)
3. 行选择(query方法)
# 查询特定餐厅
restaurants.query('DBA == "STARBUCKS"')
# 查询特定违规代码
violations.query('VIOLATION_CODE == "04L"')
# 复杂条件查询
has_mice_10012 = (
violations
.query('VIOLATION_CODE == "04L" and ZIPCODE == "10012"')
.filter(items=['DBA', 'INSPECTION_DATE'])
)
4. 数据去重(drop_duplicates方法)
(
restaurants
.query('CUISINE_DESCRIPTION == "Coffee/Tea" and ZIPCODE == "10012"')
.filter(items=['DBA'])
.drop_duplicates()
)
实战分析案例
案例1:分析有老鼠问题的餐厅
# 获取所有有老鼠问题的餐厅
has_mice = violations.query('VIOLATION_CODE == "04L"')
# 统计最常见的有老鼠问题的餐厅
mice = has_mice["DBA"].value_counts()
# 获取最常见的25家餐厅
top_restaurants = restaurants["DBA"].value_counts().head(25)
# 计算常见餐厅中有老鼠问题的比例
(mice / top_restaurants).dropna()
案例2:分析NYU附近卫生条件差的餐厅
# 获取违规代码描述
with engine.connect() as connection:
sql = "SELECT * FROM doh_restaurants.violation_codes"
codes = pd.read_sql(text(sql), con=connection)
# 查询NYU附近卫生条件差的餐厅
filthy_near_NYU = (
violations
.query('VIOLATION_CODE in ["04K", "04L", "04M", "04N", "04O"]')
.query('ZIPCODE in ["10012", "10003", "10014"]')
.query('INSPECTION_DATE > "2023-01-01"')
.filter(items=['DBA', 'INSPECTION_DATE'])
.sort_values("INSPECTION_DATE", ascending=False)
.drop_duplicates()
)
总结
通过本文的学习,我们掌握了Pandas数据处理的核心技巧:
- 使用filter方法灵活选择需要的列
- 使用rename方法重命名列
- 使用query方法进行条件筛选
- 使用drop_duplicates方法去除重复数据
这些基础技巧是数据分析的基石,掌握它们将为后续更复杂的数据分析工作打下坚实基础。在实际应用中,我们可以将这些技巧组合使用,解决各种数据分析问题。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
376
3.26 K
暂无简介
Dart
621
140
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
479
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
263
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
619
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
791
77