Pandas基础数据处理技巧详解:以纽约餐厅卫生检查数据为例
2025-06-04 19:01:13作者:戚魁泉Nursing
前言
在数据分析领域,Pandas是Python中最强大的数据处理库之一。本文将以ipeirotis/dealing_with_data项目中的纽约餐厅卫生检查数据为例,详细介绍Pandas的基础数据操作技巧,帮助读者快速掌握数据处理的核心方法。
环境准备
在开始数据分析前,我们需要搭建合适的工作环境:
# 安装必要的Python库
!pip3 install -U -q PyMySQL sqlalchemy
# 导入常用数据分析库
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
# 设置图表显示样式
%config InlineBackend.figure_format = 'retina'
matplotlib.style.use(["seaborn-v0_8-talk", "seaborn-v0_8-ticks", "seaborn-v0_8-whitegrid"])
数据获取
我们将从MySQL数据库中获取纽约市餐厅卫生检查数据,这些数据已经过清洗和规范化处理:
# 创建数据库连接
from sqlalchemy import create_engine
from sqlalchemy import text
conn_string = 'mysql+pymysql://{user}:{password}@{host}/{db}?charset=utf8mb4'.format(
host = 'db.ipeirotis.org',
user = 'student',
password = 'dwdstudent2015',
db = 'doh_restaurants',
encoding = 'utf8mb4')
engine = create_engine(conn_string)
数据加载
我们通过SQL查询获取三组关键数据:
- 餐厅基本信息:
sql = '''
SELECT R.CAMIS, R.DBA, R.BUILDING, R.STREET, R.ZIPCODE, R.BORO,
R.CUISINE_DESCRIPTION, R.LATITUDE, R.LONGITUDE, R.NTA
FROM doh_restaurants.restaurants R
'''
with engine.connect() as connection:
restaurants = pd.read_sql(text(sql), con=connection)
- 检查记录:
sql = '''
SELECT R.CAMIS, R.DBA, R.ZIPCODE, R.BORO, R.CUISINE_DESCRIPTION, R.NTA,
I.INSPECTION_DATE, I.INSPECTION_ID,
I.INSPECTION_TYPE, I.SCORE, I.GRADE
FROM restaurants R
JOIN inspections I ON I.CAMIS = R.CAMIS
'''
with engine.connect() as connection:
inspections = pd.read_sql(text(sql), con=connection)
- 违规记录:
sql = '''
WITH latest_inspection AS (
SELECT CAMIS, MAX(INSPECTION_DATE) AS INSPECTION_DATE FROM inspections
GROUP BY CAMIS
)
SELECT R.CAMIS, R.DBA, R.ZIPCODE, R.BORO,
I.INSPECTION_DATE, I.INSPECTION_ID, I.INSPECTION_TYPE,
V.VIOLATION_CODE, I.SCORE, I.GRADE
FROM restaurants R
JOIN latest_inspection L ON R.CAMIS = L.CAMIS
JOIN inspections I ON I.CAMIS = L.CAMIS AND L.INSPECTION_DATE = I.INSPECTION_DATE
JOIN violations V ON I.INSPECTION_ID = V.INSPECTION_ID
'''
with engine.connect() as connection:
violations = pd.read_sql(text(sql), con=connection)
核心数据处理技巧
1. 列选择(filter方法)
在数据分析中,我们经常只需要关注部分列的数据:
# 选择特定列
inspections.filter(items=["DBA", "GRADE", "INSPECTION_DATE"])
# 使用链式操作选择多列并显示前10行
columns = ["CAMIS", "DBA", "GRADE", "INSPECTION_DATE", "SCORE"]
(
inspections
.filter(items=columns)
.head(10)
)
高级列选择技巧:
# 选择包含特定字符串的列
inspections.filter(like='DATE')
# 使用正则表达式选择列
restaurants.filter(regex=r'^C') # 选择所有以C开头的列
2. 列重命名(rename方法)
restaurants.rename(
columns={
"CAMIS": "RESTID",
"DBA": "REST_NAME",
"BUILDING": "STREET_NUM",
"BORO": "BOROUGH"
}
)
3. 行选择(query方法)
# 查询特定餐厅
restaurants.query('DBA == "STARBUCKS"')
# 查询特定违规代码
violations.query('VIOLATION_CODE == "04L"')
# 复杂条件查询
has_mice_10012 = (
violations
.query('VIOLATION_CODE == "04L" and ZIPCODE == "10012"')
.filter(items=['DBA', 'INSPECTION_DATE'])
)
4. 数据去重(drop_duplicates方法)
(
restaurants
.query('CUISINE_DESCRIPTION == "Coffee/Tea" and ZIPCODE == "10012"')
.filter(items=['DBA'])
.drop_duplicates()
)
实战分析案例
案例1:分析有老鼠问题的餐厅
# 获取所有有老鼠问题的餐厅
has_mice = violations.query('VIOLATION_CODE == "04L"')
# 统计最常见的有老鼠问题的餐厅
mice = has_mice["DBA"].value_counts()
# 获取最常见的25家餐厅
top_restaurants = restaurants["DBA"].value_counts().head(25)
# 计算常见餐厅中有老鼠问题的比例
(mice / top_restaurants).dropna()
案例2:分析NYU附近卫生条件差的餐厅
# 获取违规代码描述
with engine.connect() as connection:
sql = "SELECT * FROM doh_restaurants.violation_codes"
codes = pd.read_sql(text(sql), con=connection)
# 查询NYU附近卫生条件差的餐厅
filthy_near_NYU = (
violations
.query('VIOLATION_CODE in ["04K", "04L", "04M", "04N", "04O"]')
.query('ZIPCODE in ["10012", "10003", "10014"]')
.query('INSPECTION_DATE > "2023-01-01"')
.filter(items=['DBA', 'INSPECTION_DATE'])
.sort_values("INSPECTION_DATE", ascending=False)
.drop_duplicates()
)
总结
通过本文的学习,我们掌握了Pandas数据处理的核心技巧:
- 使用filter方法灵活选择需要的列
- 使用rename方法重命名列
- 使用query方法进行条件筛选
- 使用drop_duplicates方法去除重复数据
这些基础技巧是数据分析的基石,掌握它们将为后续更复杂的数据分析工作打下坚实基础。在实际应用中,我们可以将这些技巧组合使用,解决各种数据分析问题。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
yuanrongopenYuanrong runtime:openYuanrong 多语言运行时提供函数分布式编程,支持 Python、Java、C++ 语言,实现类单机编程高性能分布式运行。Go051
pc-uishopTNT开源商城系统使用java语言开发,基于SpringBoot架构体系构建的一套b2b2c商城,商城是满足集平台自营和多商户入驻于一体的多商户运营服务系统。包含PC 端、手机端(H5\APP\小程序),系统架构以及实现案例中应满足和未来可能出现的业务系统进行对接。Vue00
ebook-to-mindmapepub、pdf 拆书 AI 总结TSX01
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
540
3.77 K
Ascend Extension for PyTorch
Python
351
417
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
614
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
338
185
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
988
253
openGauss kernel ~ openGauss is an open source relational database management system
C++
169
233
暂无简介
Dart
778
193
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
115
141
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.35 K
758