MVCNN-TensorFlow: 三维形状识别的多视角卷积神经网络实现
1. 项目介绍
MVCNN-TensorFlow 是一个基于 TensorFlow 的多视角卷积神经网络(Multi-View CNN,简称 MVCNN)的实现。该网络由 Su 等人提出,用于三维形状识别。MVCNN 通过对物体的多个视角进行卷积处理,然后融合这些视角的特征来进行分类或识别。本项目提供了一个简单的 MVCNN 实现,其中包括 AlexNet 模型、12个视角的输入、在 pool5 层后进行视图池化等特性。
2. 项目快速启动
环境准备
在开始之前,请确保您的系统中已安装以下依赖项:
- CUDA (版本 7.5 或更高)
- TensorFlow (版本 0.10 或更高)
- Python 2.7
- 其他必要的 Python 包
数据准备
您需要为 3D 形状准备渲染后的视角数据。例如,可以使用 ModelNet40 数据集。每个 3D 形状应使用 phong-shading 渲染,无纹理,白色前景和黑色背景,30 度的仰角,以及每隔 30 度的 12 个方位角。
每个 3D 形状的数据定义在一个文本文件中。例如,查看 data_sample/view/list/train/airplane/airplane_0001.off.txt。第一行是分类 ID(从 0 开始),第二行是视图数量(默认 12 个),接下来是每个视图的图像文件。
您需要为训练、验证和测试准备三个列表文件。例如,查看 data_sample/view/train_lists.txt。第二列是分类 ID。请在 globals.py 中指定这些列表文件的路径。
预训练模型准备
本项目包含了预训练的 AlexNet 模型,但由于 GitHub 文件大小限制,模型被拆分为三个文件。要合并这些文件,请运行:
./prepare_pretrained_alexnet.sh
训练
首次训练时,运行以下命令:
mkdir tmp
python train.py --train_dir=`pwd`/tmp --caffemodel=`pwd`/alexnet_imagenet.npy --learning_rate=0.0001
进行微调时,运行以下命令(其中 N 是您的检查点迭代次数):
python train.py --train_dir=`pwd`/tmp --weights=`pwd`/tmp/model.ckpt-N --learning_rate=0.0001
测试
进行测试时(其中 N 是您的检查点迭代次数),运行:
python test.py --weights=`pwd`/tmp/model.ckpt-N
3. 应用案例和最佳实践
在本项目中,最佳实践包括正确设置训练数据、预训练模型以及训练过程中的学习率。确保在训练前正确准备和校验数据,这对于模型性能至关重要。此外,对预训练模型进行微调,可以加快训练速度并提高模型精度。
4. 典型生态项目
MVCNN-TensorFlow 作为三维形状识别的一个实现,可以与以下生态项目结合使用:
- ModelNet:一个广泛使用的大型三维形状数据集。
- TensorFlow:强大的开源机器学习框架,适用于各种深度学习应用。
- 其他三维形状识别项目:如 PointNet、ShapeNet 等,可以相互参考和集成。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00