MVCNN-TensorFlow: 三维形状识别的多视角卷积神经网络实现
1. 项目介绍
MVCNN-TensorFlow 是一个基于 TensorFlow 的多视角卷积神经网络(Multi-View CNN,简称 MVCNN)的实现。该网络由 Su 等人提出,用于三维形状识别。MVCNN 通过对物体的多个视角进行卷积处理,然后融合这些视角的特征来进行分类或识别。本项目提供了一个简单的 MVCNN 实现,其中包括 AlexNet 模型、12个视角的输入、在 pool5 层后进行视图池化等特性。
2. 项目快速启动
环境准备
在开始之前,请确保您的系统中已安装以下依赖项:
- CUDA (版本 7.5 或更高)
- TensorFlow (版本 0.10 或更高)
- Python 2.7
- 其他必要的 Python 包
数据准备
您需要为 3D 形状准备渲染后的视角数据。例如,可以使用 ModelNet40 数据集。每个 3D 形状应使用 phong-shading 渲染,无纹理,白色前景和黑色背景,30 度的仰角,以及每隔 30 度的 12 个方位角。
每个 3D 形状的数据定义在一个文本文件中。例如,查看 data_sample/view/list/train/airplane/airplane_0001.off.txt
。第一行是分类 ID(从 0 开始),第二行是视图数量(默认 12 个),接下来是每个视图的图像文件。
您需要为训练、验证和测试准备三个列表文件。例如,查看 data_sample/view/train_lists.txt
。第二列是分类 ID。请在 globals.py
中指定这些列表文件的路径。
预训练模型准备
本项目包含了预训练的 AlexNet 模型,但由于 GitHub 文件大小限制,模型被拆分为三个文件。要合并这些文件,请运行:
./prepare_pretrained_alexnet.sh
训练
首次训练时,运行以下命令:
mkdir tmp
python train.py --train_dir=`pwd`/tmp --caffemodel=`pwd`/alexnet_imagenet.npy --learning_rate=0.0001
进行微调时,运行以下命令(其中 N 是您的检查点迭代次数):
python train.py --train_dir=`pwd`/tmp --weights=`pwd`/tmp/model.ckpt-N --learning_rate=0.0001
测试
进行测试时(其中 N 是您的检查点迭代次数),运行:
python test.py --weights=`pwd`/tmp/model.ckpt-N
3. 应用案例和最佳实践
在本项目中,最佳实践包括正确设置训练数据、预训练模型以及训练过程中的学习率。确保在训练前正确准备和校验数据,这对于模型性能至关重要。此外,对预训练模型进行微调,可以加快训练速度并提高模型精度。
4. 典型生态项目
MVCNN-TensorFlow 作为三维形状识别的一个实现,可以与以下生态项目结合使用:
- ModelNet:一个广泛使用的大型三维形状数据集。
- TensorFlow:强大的开源机器学习框架,适用于各种深度学习应用。
- 其他三维形状识别项目:如 PointNet、ShapeNet 等,可以相互参考和集成。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0301- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









