MVCNN-TensorFlow: 三维形状识别的多视角卷积神经网络实现
1. 项目介绍
MVCNN-TensorFlow 是一个基于 TensorFlow 的多视角卷积神经网络(Multi-View CNN,简称 MVCNN)的实现。该网络由 Su 等人提出,用于三维形状识别。MVCNN 通过对物体的多个视角进行卷积处理,然后融合这些视角的特征来进行分类或识别。本项目提供了一个简单的 MVCNN 实现,其中包括 AlexNet 模型、12个视角的输入、在 pool5 层后进行视图池化等特性。
2. 项目快速启动
环境准备
在开始之前,请确保您的系统中已安装以下依赖项:
- CUDA (版本 7.5 或更高)
- TensorFlow (版本 0.10 或更高)
- Python 2.7
- 其他必要的 Python 包
数据准备
您需要为 3D 形状准备渲染后的视角数据。例如,可以使用 ModelNet40 数据集。每个 3D 形状应使用 phong-shading 渲染,无纹理,白色前景和黑色背景,30 度的仰角,以及每隔 30 度的 12 个方位角。
每个 3D 形状的数据定义在一个文本文件中。例如,查看 data_sample/view/list/train/airplane/airplane_0001.off.txt。第一行是分类 ID(从 0 开始),第二行是视图数量(默认 12 个),接下来是每个视图的图像文件。
您需要为训练、验证和测试准备三个列表文件。例如,查看 data_sample/view/train_lists.txt。第二列是分类 ID。请在 globals.py 中指定这些列表文件的路径。
预训练模型准备
本项目包含了预训练的 AlexNet 模型,但由于 GitHub 文件大小限制,模型被拆分为三个文件。要合并这些文件,请运行:
./prepare_pretrained_alexnet.sh
训练
首次训练时,运行以下命令:
mkdir tmp
python train.py --train_dir=`pwd`/tmp --caffemodel=`pwd`/alexnet_imagenet.npy --learning_rate=0.0001
进行微调时,运行以下命令(其中 N 是您的检查点迭代次数):
python train.py --train_dir=`pwd`/tmp --weights=`pwd`/tmp/model.ckpt-N --learning_rate=0.0001
测试
进行测试时(其中 N 是您的检查点迭代次数),运行:
python test.py --weights=`pwd`/tmp/model.ckpt-N
3. 应用案例和最佳实践
在本项目中,最佳实践包括正确设置训练数据、预训练模型以及训练过程中的学习率。确保在训练前正确准备和校验数据,这对于模型性能至关重要。此外,对预训练模型进行微调,可以加快训练速度并提高模型精度。
4. 典型生态项目
MVCNN-TensorFlow 作为三维形状识别的一个实现,可以与以下生态项目结合使用:
- ModelNet:一个广泛使用的大型三维形状数据集。
- TensorFlow:强大的开源机器学习框架,适用于各种深度学习应用。
- 其他三维形状识别项目:如 PointNet、ShapeNet 等,可以相互参考和集成。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00