VerneMQ高负载场景下的性能调优指南
2025-06-25 12:36:05作者:卓艾滢Kingsley
背景介绍
VerneMQ作为一款高性能的分布式MQTT消息代理,在实际生产环境中可能会遇到高负载场景下的性能瓶颈。本文针对一个典型的高负载场景进行分析,该场景中:
- 25个客户端连接,每个客户端模拟1000个设备
- 每个设备每10秒发送一条消息(QoS 1)
- 2个订阅客户端接收所有消息
- 使用共享订阅模式
在高负载下,系统日志中出现了busy_port、suppressed,port_events等警告信息,表明系统资源可能已达到瓶颈。
问题分析
从日志信息可以看出,主要瓶颈出现在网络I/O层面,具体表现为:
- 端口繁忙警告:
busy_port表明TCP端口处理消息的速度跟不上消息到达的速度 - 端口事件被抑制:
suppressed,port_events说明系统不得不丢弃部分网络事件以保护自身 - 查询超时:
Subquery failed due to timeout表明内部处理流程出现延迟
调优方案
1. TCP缓冲区优化
VerneMQ的TCP连接参数可通过tcp_listen_options配置,建议调整以下参数:
{tcp_listen_options, [
{sndbuf, 65536}, % 发送缓冲区大小
{recbuf, 65536}, % 接收缓冲区大小
{buffer, 131072}, % 总缓冲区大小
{high_watermark, 65536},% 高水位标记
{low_watermark, 32768}, % 低水位标记
{nodelay, true}, % 禁用Nagle算法
{linger, {true, 10}}, % 关闭时等待数据发送完成
{send_timeout, 30000}, % 发送超时时间
{send_timeout_close, true}
]}
2. 消息处理参数调整
对于QoS 1消息,可调整以下参数:
{max_inflight_messages, 2000} % 增加未确认消息的窗口大小
{max_online_messages, 2000} % 增加在线消息队列大小
3. 系统资源分配
{erlang.async_threads, 128} % 增加异步线程池大小
{erlang.max_ports, 524288} % 增加最大端口数
{leveldb.maximum_memory.percent, 30} % 增加LevelDB内存使用上限
实施建议
- 渐进式调整:建议每次只调整1-2个参数,观察效果后再进行下一步调整
- 监控系统指标:启用
systree_enabled和graphite_interval配置,监控系统关键指标 - 共享订阅优化:已配置
shared_subscription_policy = prefer_local是正确做法,可保持 - 队列类型:使用
lifo队列类型有助于降低消息延迟
预期效果
通过上述调整,预期可以:
- 显著减少
busy_port警告出现频率 - 提高消息吞吐量,降低延迟
- 增强系统在高负载下的稳定性
注意事项
- 调整缓冲区大小时需考虑服务器实际内存容量
- 对于持久化消息,需平衡内存使用和磁盘I/O
- 生产环境建议进行充分的压力测试
通过系统化的参数调优,VerneMQ能够更好地应对高并发、高吞吐的消息处理场景,为物联网应用提供稳定可靠的消息服务。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 Python开发者的macOS终极指南:VSCode安装配置全攻略 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 STM32到GD32项目移植完全指南:从兼容性到实战技巧
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
402
3.12 K
Ascend Extension for PyTorch
Python
224
249
暂无简介
Dart
672
159
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
315
React Native鸿蒙化仓库
JavaScript
262
324
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
219