Dependency Analysis Gradle Plugin 1.29.0版本升级导致的Android项目构建失败分析
问题概述
近期在升级Dependency Analysis Gradle Plugin到1.29.0版本时,部分Android项目出现了构建失败的问题。具体表现为在项目配置阶段抛出异常,提示"too late to add actions as the callbacks already executed"错误。
错误现象
当使用1.29.0版本插件时,Android项目在构建初期就会失败,错误信息明确指出:
It is too late to add actions as the callbacks already executed.
Did you try to call beforeVariants or onVariants from the old variant API
'applicationVariants' for instance ? you should always call beforeVariants or
onVariants directly from the androidComponents DSL block.
问题根源
经过分析,这个问题主要与以下因素相关:
-
插件配置时机问题:插件在
afterEvaluate
块中配置Android项目,而此时Android组件的回调已经执行完毕。 -
auto-apply设置的影响:当设置
dependency.analysis.autoapply=false
时,问题会显现。这是因为手动应用插件的方式与自动应用在时机上存在差异。 -
Android Gradle Plugin的严格检查:新版AGP对variant API的使用时机有更严格的限制,要求必须在
androidComponents
DSL块中直接调用beforeVariants
或onVariants
。
技术背景
在Gradle构建过程中,Android项目的variant配置有其特定的生命周期。当使用新的Android组件API时,对variant的操作必须在正确的时机进行。1.29.0版本的插件在afterEvaluate
中配置Android项目,这可能导致:
- 错过了Android组件配置的最佳时机
- 与AGP的内部执行顺序产生冲突
- 违反了variant API的使用规范
解决方案
目前有以下几种临时解决方案:
-
保持auto-apply启用:不设置
dependency.analysis.autoapply=false
,让插件自动应用。 -
等待插件修复:插件作者已确认移除
afterEvaluate
块可以解决此问题,预计在后续版本中修复。 -
回退到旧版本:如果项目紧急,可以暂时回退到1.28.0版本。
最佳实践建议
对于Android项目使用依赖分析插件时,建议:
- 了解插件的配置时机对构建的影响
- 谨慎使用
afterEvaluate
,特别是在涉及variant API时 - 关注插件更新日志,及时了解兼容性变化
- 在CI环境中先进行小范围测试再全面升级
总结
这个问题展示了Gradle插件开发中生命周期管理的重要性,特别是在与Android构建系统交互时。插件开发者需要精确把握配置时机,而使用者则需要理解不同配置方式可能带来的影响。随着Android构建系统的演进,这类时序相关的问题可能会更加常见,开发者应当提高对构建生命周期敏感性的认识。
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0127AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选









