TsED框架v8.8.0-beta.1版本发布:新增Fastify平台支持
TsED是一个基于TypeScript的企业级Node.js框架,它结合了Express/Koa等流行框架的优势,同时提供了依赖注入、装饰器等现代化开发特性。该框架特别适合构建大型、可维护的后端应用,目前最新发布的v8.8.0-beta.1版本带来了重要的新特性。
核心更新:Fastify平台支持
本次版本最重要的更新是新增了对Fastify平台的支持。Fastify作为高性能的Node.js web框架,以其出色的请求处理速度和低开销著称。TsED通过新的@tsed/platform-fastify包实现了与Fastify的深度集成,开发者现在可以在保持TsED原有开发体验的同时,享受到Fastify的性能优势。
集成实现上,TsED团队特别注重了与现有架构的无缝衔接。新版本中,Fastify适配器遵循了v8.5.2版本引入的适配器规范,确保了API的一致性。这意味着开发者可以像使用Express平台一样使用Fastify,包括路由、中间件、控制器等核心概念都保持了相同的使用方式。
文件上传功能增强
配合Fastify平台的引入,新版本还增加了@tsed/platform-multer包中的Fastify Multer适配器。Multer是Node.js中处理multipart/form-data(主要用于文件上传)的中间件。这一更新使得在Fastify平台上处理文件上传变得简单高效,开发者可以使用熟悉的Multer API,而不需要学习新的文件上传处理方式。
性能与稳定性改进
在底层优化方面,新版本修复了Objection.js装饰器在esbuild打包时可能出现的循环引用问题。Objection.js是一个流行的Node.js ORM,与Knex.js配合使用。这一修复使得在使用现代打包工具时,TsED与Objection.js的集成更加稳定可靠。
响应过滤器方面也进行了改进,增强了响应类型的解析能力。这意味着框架现在能更准确地推断和验证控制器方法的返回类型,为开发者提供更好的类型安全性和开发体验。
依赖管理优化
新版本添加了缺失的encodeurl依赖项,这是一个用于URL编码的工具库。虽然这个改动看似微小,但它体现了TsED团队对项目依赖管理的严谨态度,确保所有必要的功能都有明确的依赖声明,避免潜在的运行时错误。
总结
TsED v8.8.0-beta.1版本标志着框架向多平台支持迈出了重要一步。通过引入Fastify平台,开发者现在可以根据项目需求在Express和Fastify之间做出选择,同时保持统一的开发体验。文件上传功能的增强和底层稳定性的改进,进一步提升了框架的实用性和可靠性。
这个beta版本为开发者提供了提前体验新特性的机会,建议关注性能需求的项目可以开始尝试集成Fastify平台,为后续的正式版本升级做好准备。随着TsED生态的不断丰富,它正成为TypeScript后端开发领域中一个越来越有吸引力的选择。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00