TsED框架v8.8.0-beta.1版本发布:新增Fastify平台支持
TsED是一个基于TypeScript的企业级Node.js框架,它结合了Express/Koa等流行框架的优势,同时提供了依赖注入、装饰器等现代化开发特性。该框架特别适合构建大型、可维护的后端应用,目前最新发布的v8.8.0-beta.1版本带来了重要的新特性。
核心更新:Fastify平台支持
本次版本最重要的更新是新增了对Fastify平台的支持。Fastify作为高性能的Node.js web框架,以其出色的请求处理速度和低开销著称。TsED通过新的@tsed/platform-fastify
包实现了与Fastify的深度集成,开发者现在可以在保持TsED原有开发体验的同时,享受到Fastify的性能优势。
集成实现上,TsED团队特别注重了与现有架构的无缝衔接。新版本中,Fastify适配器遵循了v8.5.2版本引入的适配器规范,确保了API的一致性。这意味着开发者可以像使用Express平台一样使用Fastify,包括路由、中间件、控制器等核心概念都保持了相同的使用方式。
文件上传功能增强
配合Fastify平台的引入,新版本还增加了@tsed/platform-multer
包中的Fastify Multer适配器。Multer是Node.js中处理multipart/form-data(主要用于文件上传)的中间件。这一更新使得在Fastify平台上处理文件上传变得简单高效,开发者可以使用熟悉的Multer API,而不需要学习新的文件上传处理方式。
性能与稳定性改进
在底层优化方面,新版本修复了Objection.js装饰器在esbuild打包时可能出现的循环引用问题。Objection.js是一个流行的Node.js ORM,与Knex.js配合使用。这一修复使得在使用现代打包工具时,TsED与Objection.js的集成更加稳定可靠。
响应过滤器方面也进行了改进,增强了响应类型的解析能力。这意味着框架现在能更准确地推断和验证控制器方法的返回类型,为开发者提供更好的类型安全性和开发体验。
依赖管理优化
新版本添加了缺失的encodeurl依赖项,这是一个用于URL编码的工具库。虽然这个改动看似微小,但它体现了TsED团队对项目依赖管理的严谨态度,确保所有必要的功能都有明确的依赖声明,避免潜在的运行时错误。
总结
TsED v8.8.0-beta.1版本标志着框架向多平台支持迈出了重要一步。通过引入Fastify平台,开发者现在可以根据项目需求在Express和Fastify之间做出选择,同时保持统一的开发体验。文件上传功能的增强和底层稳定性的改进,进一步提升了框架的实用性和可靠性。
这个beta版本为开发者提供了提前体验新特性的机会,建议关注性能需求的项目可以开始尝试集成Fastify平台,为后续的正式版本升级做好准备。随着TsED生态的不断丰富,它正成为TypeScript后端开发领域中一个越来越有吸引力的选择。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0299- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









