TsED框架v8.8.0-beta.1版本发布:新增Fastify平台支持
TsED是一个基于TypeScript的企业级Node.js框架,它结合了Express/Koa等流行框架的优势,同时提供了依赖注入、装饰器等现代化开发特性。该框架特别适合构建大型、可维护的后端应用,目前最新发布的v8.8.0-beta.1版本带来了重要的新特性。
核心更新:Fastify平台支持
本次版本最重要的更新是新增了对Fastify平台的支持。Fastify作为高性能的Node.js web框架,以其出色的请求处理速度和低开销著称。TsED通过新的@tsed/platform-fastify
包实现了与Fastify的深度集成,开发者现在可以在保持TsED原有开发体验的同时,享受到Fastify的性能优势。
集成实现上,TsED团队特别注重了与现有架构的无缝衔接。新版本中,Fastify适配器遵循了v8.5.2版本引入的适配器规范,确保了API的一致性。这意味着开发者可以像使用Express平台一样使用Fastify,包括路由、中间件、控制器等核心概念都保持了相同的使用方式。
文件上传功能增强
配合Fastify平台的引入,新版本还增加了@tsed/platform-multer
包中的Fastify Multer适配器。Multer是Node.js中处理multipart/form-data(主要用于文件上传)的中间件。这一更新使得在Fastify平台上处理文件上传变得简单高效,开发者可以使用熟悉的Multer API,而不需要学习新的文件上传处理方式。
性能与稳定性改进
在底层优化方面,新版本修复了Objection.js装饰器在esbuild打包时可能出现的循环引用问题。Objection.js是一个流行的Node.js ORM,与Knex.js配合使用。这一修复使得在使用现代打包工具时,TsED与Objection.js的集成更加稳定可靠。
响应过滤器方面也进行了改进,增强了响应类型的解析能力。这意味着框架现在能更准确地推断和验证控制器方法的返回类型,为开发者提供更好的类型安全性和开发体验。
依赖管理优化
新版本添加了缺失的encodeurl依赖项,这是一个用于URL编码的工具库。虽然这个改动看似微小,但它体现了TsED团队对项目依赖管理的严谨态度,确保所有必要的功能都有明确的依赖声明,避免潜在的运行时错误。
总结
TsED v8.8.0-beta.1版本标志着框架向多平台支持迈出了重要一步。通过引入Fastify平台,开发者现在可以根据项目需求在Express和Fastify之间做出选择,同时保持统一的开发体验。文件上传功能的增强和底层稳定性的改进,进一步提升了框架的实用性和可靠性。
这个beta版本为开发者提供了提前体验新特性的机会,建议关注性能需求的项目可以开始尝试集成Fastify平台,为后续的正式版本升级做好准备。随着TsED生态的不断丰富,它正成为TypeScript后端开发领域中一个越来越有吸引力的选择。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++095AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选









