Qwen3项目中vLLM推理性能优化实践
2025-05-12 03:48:32作者:咎竹峻Karen
性能测试背景
在Qwen3项目开发过程中,团队对Qwen1.5-7B模型在vLLM框架下的推理性能进行了深入测试。官方博客曾报告该模型在特定配置下能达到2298.89 tokens/s的推理吞吐量,这一数据引起了开发者社区的广泛关注。
性能测试方法
通过分析项目代码和讨论内容,我们了解到官方性能测试采用了vLLM框架自带的benchmark_throughput.py脚本。该脚本的核心特点是能够并发发起多个推理请求,充分利用GPU显存容量,从而最大化计算资源利用率。
常见性能差异原因
许多开发者在复现这一性能指标时遇到了困难,实测吞吐量往往只能达到1000 tokens/s左右。造成这种差异的主要原因包括:
- 请求并发度不足:单个请求无法充分利用GPU计算资源
- 显存利用率低:没有合理配置batch size导致显存未被充分利用
- 测试参数差异:输入输出长度、采样参数等设置不一致
性能优化建议
基于Qwen3项目的实践经验,我们总结出以下vLLM推理性能优化要点:
- 提高并发请求数:根据GPU显存容量(如A100-80GB)合理设置并发请求数量
- 优化batch size:通过实验找到最佳batch size,平衡吞吐量和延迟
- 合理配置采样参数:如temperature、top_p等超参数会影响计算效率
- 使用专业测试脚本:推荐使用vLLM官方benchmark工具进行测试
实际应用指导
对于希望在实际应用中优化Qwen3模型推理性能的开发者,建议:
- 首先确定目标硬件配置下的最大显存容量
- 通过小规模测试确定单请求的显存占用
- 计算最大并发请求数,留出适当余量
- 使用标准测试工具进行基准测试
- 根据业务需求在吞吐量和延迟之间寻找平衡点
通过系统性的性能调优,开发者可以在自己的硬件环境下充分发挥Qwen3模型的推理性能潜力。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
407
3.14 K
Ascend Extension for PyTorch
Python
226
252
暂无简介
Dart
673
160
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
664
319
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
658
React Native鸿蒙化仓库
JavaScript
262
326
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
220
仓颉编译器源码及 cjdb 调试工具。
C++
135
868