探索未知:Loud ML - 释放隐藏的洞察力
2024-05-23 14:26:00作者:霍妲思

Loud ML是一个强大的开源推理引擎,专为指标和事件分析而设计,是将机器学习快速嵌入时间序列应用的最快途径。它提供了用于存储和查询数据的API,以及在后台处理数据进行机器学习或异常检测以触发警报的功能。
助力文档改进
该项目的所有文档,包括这篇简介,都是开放源代码的,并托管在GitHub上。我们欢迎您的贡献和反馈。如需报告文档问题或提交意见,请在GitHub上创建问题。
时间序列数据的AI库
Loud ML是一个基于TensorFlow构建的时间序列推理引擎。无论是预测数据、检测异常还是利用未来信息自动化流程,它都能大显身手。
技术亮点
- 集成HTTP API简化了与其他应用程序的集成
- 数据无关性:ML引擎可以从各种数据桶中消费数据,提供无缝的数据体验。支持的数据桶包括:
- ElasticSearch
- InfluxDB
- MongoDB
- OpenTSDB(由Volodymyr Sergeyev贡献)
- JSON配置
- 安装和管理简便
- 创新的Donut无监督学习模型arXiv 1802.03903
- 近实时数据处理:数据桶定期查询并馈送给推理引擎,返回结果
安装与启动
Loud ML可以通过pip像其他Python包一样安装。建议在虚拟环境(如virtualenv或venv)中安装以避免冲突。查看五分钟了解Python虚拟环境获取快速入门指南。
在虚拟环境中运行:
make install
启动Loud ML模型服务器:
loudmld -c <path/to/config.yml file>
使用loudml命令行界面:
pip install loudml-python
然后,你可以执行loudml命令开始CLI,假设你已通过systemctl start loudmld或直接运行loudmld启动服务器。
参与贡献
Loud ML欢迎贡献者!除了官方的Python客户端库外,还可以找到JavaScript、Java、Ruby和Go的开源客户端库。了解更多贡献方式,参见贡献文档。
许可证与支持
Loud ML遵循特定的许可证规定,详情请查阅LICENSE文件。如有支持需求,敬请联系contact@loudml.io。
结语
Loud ML是一个强大且灵活的工具,适用于时间序列数据分析的各种场景,从监控系统到金融市场的预测分析,再到物联网设备的行为识别。其易用的API、广泛的数据库支持和创新的Donut模型,都让Loud ML成为开发人员和数据科学家的理想选择。现在就开始你的探索之旅,挖掘隐藏在大量数据背后的价值吧!
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
184
197
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
480
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
276
97
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.44 K
暂无简介
Dart
624
140
React Native鸿蒙化仓库
JavaScript
242
315
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
openGauss kernel ~ openGauss is an open source relational database management system
C++
157
210