Qiskit中多控制位CX门与自定义基础门的转换问题解析
2025-06-04 06:50:53作者:江焘钦
背景介绍
在量子计算中,多控制位CX门(MCX)是一个重要的量子门操作,它可以在多个控制位同时满足条件时翻转目标量子位。Qiskit作为IBM开发的量子计算框架,提供了强大的量子电路构建和优化能力。然而,在使用自定义基础门集进行电路转换时,开发者可能会遇到一些预期之外的行为。
问题现象
当使用Qiskit 1.3.0版本时,如果尝试将包含多控制位CX门的量子电路转换为自定义基础门集(如["x", "y", "z", "cx", "swap", "s", "h", "ccx", "rx"]),可能会发现转换后的电路与原始电路的测量结果不一致。具体表现为:
- 原始电路在特定初始状态下测量结果为'1111010'
- 转换后的电路在相同条件下测量结果为'1101010'
- 这种差异在所有优化级别(0-3)下都保持一致
技术原理分析
这种差异的根本原因在于Qiskit转换器对量子位初始状态的假设。默认情况下,转换器假设所有量子位初始状态为|0⟩,这使得转换器能够进行以下优化:
- 利用空闲量子位作为辅助量子位
- 采用更高效的MCX门分解方案(减少深度和CX门数量)
- 进行基于初始状态的电路简化
然而,当用户手动设置某些量子位为|1⟩状态(如示例中的init电路)时,这种假设就被打破了。转换器仍然按照初始|0⟩的假设进行优化,导致最终电路行为与预期不符。
解决方案
要解决这个问题,有两种推荐的方法:
方法一:明确告知转换器初始状态
在生成转换管理器时,明确指定qubits_initially_zero=False参数:
decompose_pass_manager = generate_preset_pass_manager(
basis_gates=["x", "y", "z", "cx", "swap", "s", "h", "ccx", "rx"],
optimization_level=1,
qubits_initially_zero=False
)
这种方法告诉转换器不要假设量子位初始状态为|0⟩,从而避免使用依赖这种假设的优化技术。
方法二:先组合电路再转换
更推荐的做法是先将所有电路组件完整组合,最后再进行一次转换:
full_circuit = init.compose(qc)
pass_manager = generate_preset_pass_manager(backend=backend, optimization_level=1)
transpiled_circuit = pass_manager.run(full_circuit)
这种方法允许转换器基于完整的电路信息做出最优的转换决策,通常能产生更好的优化结果。
最佳实践建议
- 延迟转换:尽可能在电路完全构建后再进行转换,而不是分段转换
- 明确初始状态:如果必须分段转换,确保正确设置
qubits_initially_zero参数 - 验证结果:对于关键电路,总是通过模拟验证转换前后的行为一致性
- 理解优化假设:熟悉转换器所做的各种假设,避免违反这些假设
总结
Qiskit转换器的默认行为基于合理的假设进行优化,但当这些假设不成立时可能导致意外结果。理解这些底层机制有助于开发者更好地控制转换过程,确保量子电路的正确性。通过合理设置参数或调整工作流程,可以轻松解决这类转换不一致的问题。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134