使用hftbacktest处理Binance订单簿快照与更新数据
2025-06-30 06:09:35作者:沈韬淼Beryl
背景介绍
hftbacktest是一个高频交易回测框架,它需要精确的订单簿数据来进行模拟。在实际应用中,我们经常需要处理来自Binance等平台的订单簿快照(Snapshot)和更新数据(Update)。本文将详细介绍如何正确使用hftbacktest处理这两种类型的数据。
数据格式解析
Binance提供的订单簿数据通常分为两种:
- 初始快照数据(SOD Snapshot):包含某一天的起始订单簿状态,每条记录代表一个价格档位
- 更新数据(Update):包含订单簿的实时变化,主要是"set"类型的更新
典型的数据格式如下:
快照数据示例:
symbol,timestamp,first_update_id,last_update_id,side,update_type,price,qty
BTCUSDT,1596153599999,45007926182,45007926182,a,snap,100000.00,0.100
更新数据示例:
symbol,timestamp,first_update_id,last_update_id,side,update_type,price,qty
BTCUSDT,1596153600001,45007926184,45007926184,a,set,11114.98,0.009
数据处理流程
1. 转换快照数据
快照数据需要使用专门的转换函数进行处理:
sod_file = 'BTCUSDT_T_DEPTH_2020-07-01_depth_snap.csv'
sod_df = bi.convert_snapshot(sod_file, 'sod_0701.npy')
这个步骤会将CSV格式的快照数据转换为hftbacktest能够识别的二进制格式。
2. 转换更新数据
更新数据需要与交易数据一起处理:
up_file = 'BTCUSDT_T_DEPTH_2020-07-01_depth_update.csv'
trades_file = 'BTCUSDT-trades-2020-07.csv'
up_df = bi.convert(up_file, trades_file, 'up_0701.npy')
3. 配置回测环境
将转换后的数据配置到回测环境中:
from hftbacktest import Recorder
from hftbacktest.stats import LinearAssetRecord
asset = (
BacktestAsset()
.data(['up_0701.npy'])
.initial_snapshot('sod_0701.npy')
# 其他配置...
)
hbt = ROIVectorMarketDepthBacktest([asset])
关键注意事项
-
时间戳问题:理想情况下,数据应包含本地接收时间戳和平台时间戳。如果只有单一时间戳,需要根据实际情况创建人工时间戳。
-
延迟配置:必须设置适当的
feed_latency参数,这个参数默认为0,但实际应用中应根据实际情况配置,最好是从实际运行环境中收集带有本地接收时间戳的数据。 -
数据完整性:确保快照数据和更新数据的时间连续性,避免出现时间跳跃或数据缺失的情况。
最佳实践建议
-
尽量收集包含本地接收时间戳的数据,这将提高回测的准确性。
-
对于历史数据,可以考虑使用线性插值等方法创建人工时间戳,但要明确标注这些时间戳是估算的。
-
在转换数据前,先进行数据质量检查,确保没有异常值或格式错误。
-
对于大规模回测,可以考虑将数据分片处理,提高处理效率。
通过以上步骤和注意事项,可以有效地将Binance的订单簿数据转换为hftbacktest可用的格式,为高频交易策略的回测提供可靠的数据基础。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
246
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
313
React Native鸿蒙化仓库
JavaScript
262
324
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
330
137