CogVideo项目中使用微调模型的技术指南
2025-05-21 13:29:04作者:伍霜盼Ellen
概述
在THUDM/CogVideo项目中,用户成功完成模型微调后获得.pt文件,但面临如何使用这些微调模型的问题。本文将详细介绍在CogVideo项目中加载和使用微调模型的具体方法,帮助开发者充分利用微调后的模型性能。
微调模型加载配置
使用微调模型的核心在于正确配置inference.yaml文件。该文件是模型推理阶段的关键配置文件,需要特别注意以下几个参数:
- base参数:必须与微调时使用的配置文件保持一致
 - load参数:指定微调模型文件的路径
 - 运行命令:需要正确组合基础配置和推理配置
 
具体实现步骤
1. 修改推理配置文件
在CogVideo/sat/configs/inference.yaml文件中,需要重点配置以下参数:
args:
  latent_channels: 16
  mode: inference
  load: "path/to/your/finetuned/model"  # 指向微调后的模型文件
  batch_size: 1
  input_type: txt
  input_file: configs/test.txt
  sampling_num_frames: 13  # 必须为13、11或9
  sampling_fps: 8
  fp16: True  # 对于CogVideoX-2B模型
  output_dir: outputs/
  force_inference: True
2. 运行命令配置
执行推理时,需要同时指定基础配置文件和推理配置文件:
python sample_video.py --base /configs/cogvideox_2b_lora.yaml /configs/inference.yaml --seed 1024
其中:
--base参数指定基础配置文件路径- 第二个参数指定推理配置文件路径
 --seed设置随机种子以保证可重复性
注意事项
- 模型兼容性:确保微调模型与基础模型架构完全兼容
 - 参数一致性:
sampling_num_frames必须设置为13、11或9中的一个 - 精度设置:根据模型大小选择
fp16(2B模型)或bf16(5B模型) - 路径正确性:确保所有文件路径都正确无误
 
高级配置选项
对于使用LoRA适配器的微调模型,配置方式略有不同:
load: "path/to/your/lora/adapter"  # 指向LoRA适配器目录
这种配置方式适用于仅微调了部分参数的模型,可以保持基础模型不变的同时应用微调效果。
常见问题解决方案
- 模型加载失败:检查文件路径是否正确,确保模型文件完整
 - 推理结果异常:验证基础配置文件是否与微调时使用的一致
 - 性能问题:适当调整
batch_size参数以优化显存使用 
通过以上配置,开发者可以充分利用微调后的模型性能,在视频生成任务中获得更好的效果。
登录后查看全文 
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
 
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
272
2.56 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
222
302
Ascend Extension for PyTorch
Python
103
130
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
597
157
暂无简介
Dart
564
125
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
231
14
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
606
仓颉编译器源码及 cjdb 调试工具。
C++
118
95
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
444