CogVideo项目中使用微调模型的技术指南
2025-05-21 14:28:44作者:伍霜盼Ellen
概述
在THUDM/CogVideo项目中,用户成功完成模型微调后获得.pt文件,但面临如何使用这些微调模型的问题。本文将详细介绍在CogVideo项目中加载和使用微调模型的具体方法,帮助开发者充分利用微调后的模型性能。
微调模型加载配置
使用微调模型的核心在于正确配置inference.yaml文件。该文件是模型推理阶段的关键配置文件,需要特别注意以下几个参数:
- base参数:必须与微调时使用的配置文件保持一致
- load参数:指定微调模型文件的路径
- 运行命令:需要正确组合基础配置和推理配置
具体实现步骤
1. 修改推理配置文件
在CogVideo/sat/configs/inference.yaml文件中,需要重点配置以下参数:
args:
latent_channels: 16
mode: inference
load: "path/to/your/finetuned/model" # 指向微调后的模型文件
batch_size: 1
input_type: txt
input_file: configs/test.txt
sampling_num_frames: 13 # 必须为13、11或9
sampling_fps: 8
fp16: True # 对于CogVideoX-2B模型
output_dir: outputs/
force_inference: True
2. 运行命令配置
执行推理时,需要同时指定基础配置文件和推理配置文件:
python sample_video.py --base /configs/cogvideox_2b_lora.yaml /configs/inference.yaml --seed 1024
其中:
--base参数指定基础配置文件路径- 第二个参数指定推理配置文件路径
--seed设置随机种子以保证可重复性
注意事项
- 模型兼容性:确保微调模型与基础模型架构完全兼容
- 参数一致性:
sampling_num_frames必须设置为13、11或9中的一个 - 精度设置:根据模型大小选择
fp16(2B模型)或bf16(5B模型) - 路径正确性:确保所有文件路径都正确无误
高级配置选项
对于使用LoRA适配器的微调模型,配置方式略有不同:
load: "path/to/your/lora/adapter" # 指向LoRA适配器目录
这种配置方式适用于仅微调了部分参数的模型,可以保持基础模型不变的同时应用微调效果。
常见问题解决方案
- 模型加载失败:检查文件路径是否正确,确保模型文件完整
- 推理结果异常:验证基础配置文件是否与微调时使用的一致
- 性能问题:适当调整
batch_size参数以优化显存使用
通过以上配置,开发者可以充分利用微调后的模型性能,在视频生成任务中获得更好的效果。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
185
196
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
480
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
276
97
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.44 K
暂无简介
Dart
623
140
React Native鸿蒙化仓库
JavaScript
242
315
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
openGauss kernel ~ openGauss is an open source relational database management system
C++
157
210