CogVideo项目中使用微调模型的技术指南
2025-05-21 15:37:42作者:伍霜盼Ellen
概述
在THUDM/CogVideo项目中,用户成功完成模型微调后获得.pt文件,但面临如何使用这些微调模型的问题。本文将详细介绍在CogVideo项目中加载和使用微调模型的具体方法,帮助开发者充分利用微调后的模型性能。
微调模型加载配置
使用微调模型的核心在于正确配置inference.yaml文件。该文件是模型推理阶段的关键配置文件,需要特别注意以下几个参数:
- base参数:必须与微调时使用的配置文件保持一致
- load参数:指定微调模型文件的路径
- 运行命令:需要正确组合基础配置和推理配置
具体实现步骤
1. 修改推理配置文件
在CogVideo/sat/configs/inference.yaml文件中,需要重点配置以下参数:
args:
latent_channels: 16
mode: inference
load: "path/to/your/finetuned/model" # 指向微调后的模型文件
batch_size: 1
input_type: txt
input_file: configs/test.txt
sampling_num_frames: 13 # 必须为13、11或9
sampling_fps: 8
fp16: True # 对于CogVideoX-2B模型
output_dir: outputs/
force_inference: True
2. 运行命令配置
执行推理时,需要同时指定基础配置文件和推理配置文件:
python sample_video.py --base /configs/cogvideox_2b_lora.yaml /configs/inference.yaml --seed 1024
其中:
--base参数指定基础配置文件路径- 第二个参数指定推理配置文件路径
--seed设置随机种子以保证可重复性
注意事项
- 模型兼容性:确保微调模型与基础模型架构完全兼容
- 参数一致性:
sampling_num_frames必须设置为13、11或9中的一个 - 精度设置:根据模型大小选择
fp16(2B模型)或bf16(5B模型) - 路径正确性:确保所有文件路径都正确无误
高级配置选项
对于使用LoRA适配器的微调模型,配置方式略有不同:
load: "path/to/your/lora/adapter" # 指向LoRA适配器目录
这种配置方式适用于仅微调了部分参数的模型,可以保持基础模型不变的同时应用微调效果。
常见问题解决方案
- 模型加载失败:检查文件路径是否正确,确保模型文件完整
- 推理结果异常:验证基础配置文件是否与微调时使用的一致
- 性能问题:适当调整
batch_size参数以优化显存使用
通过以上配置,开发者可以充分利用微调后的模型性能,在视频生成任务中获得更好的效果。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Python案例资源下载 - 从入门到精通的完整项目代码合集 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
246
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
313
React Native鸿蒙化仓库
JavaScript
262
324
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
330
137