在NVIDIA Omniverse Orbit中优雅处理历史动作数据的技巧
2025-06-24 14:31:34作者:温玫谨Lighthearted
背景介绍
在机器人强化学习训练过程中,特别是针对双足机器人运动控制任务时,我们经常需要访问机器人的历史动作数据来计算奖励函数。一个典型场景是需要使用"前一个动作的前一个动作"(prev_prev_action)来计算某些特定的奖励项。
问题分析
在NVIDIA Omniverse Orbit项目中,ActionManager类默认只提供了当前动作和前一个动作(prev_action)的访问接口。当开发者需要访问更早的历史动作数据时,面临几种选择:
- 直接修改ActionManager类,添加prev_prev_action属性
- 寻找不修改核心类的情况下实现相同功能的方法
解决方案比较
方案一:扩展ActionManager类
直接修改ActionManager类添加prev_prev_action属性是最直观的方法,但存在以下问题:
- 需要维护项目分支或提交PR等待合并
- 增加了核心类的复杂度
- 如果后续需要更多历史动作,会导致类不断膨胀
方案二:使用奖励项类封装状态
更优雅的解决方案是创建一个专门的奖励项类,在类内部维护所需的历史状态:
class MyRewardTerm:
def __init__(self):
self._prev_action = None
self._prev_prev_action = None
def compute(self, action):
# 计算奖励前更新历史状态
self._prev_prev_action = self._prev_action
self._prev_action = action
# 使用self._prev_prev_action计算奖励
reward = ...
return reward
这种方式的优势在于:
- 不修改核心框架代码
- 封装性好,状态管理清晰
- 易于扩展更多历史状态
- 符合面向对象设计原则
最佳实践建议
对于类似需要访问历史数据的场景,建议:
- 优先考虑在业务逻辑层维护状态,而不是修改框架核心类
- 对于确实通用的功能,可以考虑向项目提交PR,但需要评估必要性
- 状态管理要明确生命周期,避免内存泄漏
- 考虑使用环形缓冲区等数据结构处理更长的历史序列
总结
在机器人强化学习系统开发中,合理处理历史动作数据是一个常见需求。通过创建专门的奖励项类来封装状态管理,既能满足功能需求,又能保持代码的整洁和可维护性。这种方法不仅适用于当前prev_prev_action的场景,也可以推广到其他需要历史数据的类似情况。
登录后查看全文
热门项目推荐
相关项目推荐
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0118AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 JavaWeb企业门户网站源码 - 企业级门户系统开发指南 WebVideoDownloader:高效网页视频抓取工具全面使用指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 STM32到GD32项目移植完全指南:从兼容性到实战技巧 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
225
2.27 K

React Native鸿蒙化仓库
JavaScript
211
287

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

暂无简介
Dart
526
116

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
987
583

openGauss kernel ~ openGauss is an open source relational database management system
C++
148
197

GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】
Jinja
46
0

ArkUI-X adaptation to Android | ArkUI-X支持Android平台的适配层
C++
39
55

ArkUI-X adaptation to iOS | ArkUI-X支持iOS平台的适配层
Objective-C++
19
44