在NVIDIA Omniverse Orbit中优雅处理历史动作数据的技巧
2025-06-24 23:46:54作者:温玫谨Lighthearted
背景介绍
在机器人强化学习训练过程中,特别是针对双足机器人运动控制任务时,我们经常需要访问机器人的历史动作数据来计算奖励函数。一个典型场景是需要使用"前一个动作的前一个动作"(prev_prev_action)来计算某些特定的奖励项。
问题分析
在NVIDIA Omniverse Orbit项目中,ActionManager类默认只提供了当前动作和前一个动作(prev_action)的访问接口。当开发者需要访问更早的历史动作数据时,面临几种选择:
- 直接修改ActionManager类,添加prev_prev_action属性
- 寻找不修改核心类的情况下实现相同功能的方法
解决方案比较
方案一:扩展ActionManager类
直接修改ActionManager类添加prev_prev_action属性是最直观的方法,但存在以下问题:
- 需要维护项目分支或提交PR等待合并
- 增加了核心类的复杂度
- 如果后续需要更多历史动作,会导致类不断膨胀
方案二:使用奖励项类封装状态
更优雅的解决方案是创建一个专门的奖励项类,在类内部维护所需的历史状态:
class MyRewardTerm:
def __init__(self):
self._prev_action = None
self._prev_prev_action = None
def compute(self, action):
# 计算奖励前更新历史状态
self._prev_prev_action = self._prev_action
self._prev_action = action
# 使用self._prev_prev_action计算奖励
reward = ...
return reward
这种方式的优势在于:
- 不修改核心框架代码
- 封装性好,状态管理清晰
- 易于扩展更多历史状态
- 符合面向对象设计原则
最佳实践建议
对于类似需要访问历史数据的场景,建议:
- 优先考虑在业务逻辑层维护状态,而不是修改框架核心类
- 对于确实通用的功能,可以考虑向项目提交PR,但需要评估必要性
- 状态管理要明确生命周期,避免内存泄漏
- 考虑使用环形缓冲区等数据结构处理更长的历史序列
总结
在机器人强化学习系统开发中,合理处理历史动作数据是一个常见需求。通过创建专门的奖励项类来封装状态管理,既能满足功能需求,又能保持代码的整洁和可维护性。这种方法不仅适用于当前prev_prev_action的场景,也可以推广到其他需要历史数据的类似情况。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
538
3.76 K
暂无简介
Dart
775
192
Ascend Extension for PyTorch
Python
343
407
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
757
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
356
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
180
AscendNPU-IR
C++
86
142
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
250