HISAT2 开源项目安装与使用教程
1. 项目介绍
HISAT2 是一个快速且敏感的比对程序,用于将下一代测序读取(包括全基因组、转录组和外显子测序数据)映射到一个群体的人类基因组,或者映射到一个单一的参考基因组。HISAT2 基于 BWT 图的扩展设计并实现了一个图 FM 索引(GFM),这是一种原创的方法,据我们所知,这是其首次实现。除了使用一个全局 GFM 索引来表示一般人群外,HISAT2 还使用了一组覆盖整个基因组的小 GFM 索引(每个索引代表一个 56 Kbp 的基因组区域,需要 55,000 个索引来覆盖人类群体)。这些小索引(称为本地索引)与几种比对策略相结合,能够有效地比对测序读取。这种新的索引方案称为分层图 FM 索引(HGFM)。
2. 项目快速启动
2.1 安装
首先,克隆 HISAT2 的 GitHub 仓库并进行编译:
git clone https://github.com/DaehwanKimLab/hisat2.git
cd hisat2
make
2.2 构建索引
使用 hisat2-build 命令构建 HISAT2 索引:
hisat2-build genome.fa genome
2.3 比对读取
使用 hisat2 命令进行读取比对:
# 单端 FASTA 读取比对
hisat2 -f -x genome -U reads.fa -S output.sam --no-spliced-alignment
# 双端 FASTQ 读取比对
hisat2 -x genome -1 reads_1.fq -2 reads_2.fq -S output.sam
3. 应用案例和最佳实践
3.1 全基因组测序数据比对
HISAT2 可以用于将全基因组测序数据比对到参考基因组,以识别 SNPs 和结构变异。以下是一个典型的全基因组测序数据比对流程:
hisat2 -x genome -1 WGS_reads_1.fq -2 WGS_reads_2.fq -S WGS_output.sam
3.2 转录组测序数据比对
对于转录组测序数据,HISAT2 可以用于比对读取到基因组,以识别剪接位点和转录本。以下是一个典型的转录组测序数据比对流程:
hisat2 -x genome -1 RNAseq_reads_1.fq -2 RNAseq_reads_2.fq -S RNAseq_output.sam
3.3 外显子测序数据比对
HISAT2 也可以用于外显子测序数据的比对,以识别基因组中的变异。以下是一个典型的外显子测序数据比对流程:
hisat2 -x genome -1 Exome_reads_1.fq -2 Exome_reads_2.fq -S Exome_output.sam
4. 典型生态项目
4.1 StringTie
StringTie 是一个用于从 RNA-Seq 数据中组装和量化转录本的工具。它可以与 HISAT2 结合使用,以提高转录本组装的准确性。
4.2 Cufflinks
Cufflinks 是一个用于从 RNA-Seq 数据中进行转录本组装和表达量估计的工具。HISAT2 的比对结果可以直接输入到 Cufflinks 中进行进一步分析。
4.3 SAMtools
SAMtools 是一个用于处理 SAM/BAM 文件的工具集。HISAT2 生成的 SAM 文件可以使用 SAMtools 进行进一步的处理和分析。
通过以上步骤,您可以快速上手并使用 HISAT2 进行基因组数据的比对和分析。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00