TLLM_QMM 开源项目安装及使用指南
一、项目介绍
TLLM_QMM是一款由知乎团队开发并开源的工具库,旨在提供对Nvidia TensorRT-LLM中量化内核实现的简化和支持。该库特别修改了去量化过程以及权重预处理算法,以更好地适配流行的量化方案如AWQ(Adaptive Weight Quantization)和GPTQ(GPT-Quantization),并引入FP8量化方法,从而优化了模型在GPU上的运行效率。通过剥离NVInfer依赖,TLLM_QMM提供了更易用的PyTorch接口,为深度学习模型的部署和加速带来了便利。
- GitHub仓库: zhihu/TLLM_QMM
- 语言: C++
- 许可证类型: Apache License 2.0
- 关注者数量: 10 stars
- 分支数量: 2 forks
二、项目快速启动
环境准备
确保你的系统已安装以下组件:
- Python >= 3.6
- CUDA >= 10.2
- PyTorch
- Torchvision (可选)
推荐使用虚拟环境进行管理,这样可以避免不同项目间的冲突。
conda create -n tllm_qmm_env python=3.8 # 创建虚拟环境
conda activate tllm_qmm_env # 激活虚拟环境
pip install torch torchvision cuda-toolkit=10.2
克隆项目
克隆TLLM_QMM项目到本地目录:
git clone https://github.com/zhihu/TLLM_QMM.git
cd TLLM_QMM/
安装依赖项
从项目中的requirements.txt
文件中安装所有必要的Python包:
pip install -r requirements.txt
构建C/C++扩展
由于该项目包含了C/C++组件,因此还需要构建这些扩展。通常,这可以通过调用setup.py
脚本来完成:
python setup.py build_ext --inplace
这个步骤可能因项目而异;具体操作应参照项目的README.md
或INSTALL.md
文件中的说明。
三、应用案例和最佳实践
TLLM_QMM适用于多种场景,尤其是那些涉及到大量计算资源需求且性能关键的应用场合。例如,在大规模自然语言处理任务中,使用此库可以在不牺牲太多精度的情况下显著降低模型推理时间。此外,它还可以用于加快图像分类等计算机视觉任务的速度。
示例代码:
假设我们要加载一个预先训练好的模型,并将其转换为量化版本以提高速度:
import torch
from models import MyModel
from tllmqmm.quantize import Quantize
model = MyModel()
model.load_state_dict(torch.load("pretrained_weights.pth"))
q_model = Quantize(model).to('cuda')
input_tensor = torch.randn(1, 3, 224, 224).to('cuda')
output = q_model(input_tensor)
print(output.shape)
在这个例子中,我们首先实例化了一个自定义模型MyModel
,然后使用torch.load
函数加载预先训练过的权重。接着利用tllmqmm.quantize
子模块将模型进行量化,并迁移到GPU上执行。最后,我们给模型输入随机数据以测试其功能性和性能提升效果。
四、典型生态项目
TLLM_QMM作为深度学习领域的一颗新星,正逐渐融入相关生态系统中,与其他工具和服务形成互补关系。比如,它可以与PyTorch的Lightning框架结合使用,以增强模型训练和验证环节的效率;或者,与Docker容器技术融合,实现在云平台上一键部署高精度模型的目的。未来还有无限可能性等待开发者们挖掘!
通过上述指导,你应当能够顺利入门TLLM_QMM项目,并在其基础上开展更加深入的研究与创新工作。祝你在探索机器学习世界时取得丰硕成果!
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0111AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile010
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









