Axolotl项目本地JSON数据集预训练支持解析
2025-05-25 09:18:02作者:秋阔奎Evelyn
在机器学习模型训练过程中,数据加载是至关重要的第一步。本文针对Axolotl深度学习框架中的数据集加载功能进行技术解析,重点介绍其对本地JSON格式数据集的支持情况。
背景与问题
预训练大型语言模型时,开发者经常需要处理各种格式的原始数据。虽然Hugging Face数据集库提供了便捷的云端数据加载方式,但在实际业务场景中,企业更倾向于使用本地存储的专有数据集。早期版本的Axolotl框架在加载本地JSON/JSONL格式的预训练数据时存在兼容性问题,会错误地要求用户提供自定义Python脚本。
技术解决方案
最新版本的Axolotl框架已实现对多种本地数据格式的完整支持,包括:
- JSON/JSONL(行分隔的JSON)
- CSV
- Parquet
- Arrow等列式存储格式
配置方式采用标准的YAML语法,通过data_files参数指定文件列表:
pretraining_dataset:
- path: json
data_files:
- dataset_part1.jsonl
- dataset_part2.jsonl
- dataset_part3.jsonl
这种设计具有以下技术优势:
- 灵活的分片支持:可以同时加载多个数据分片,适合大规模数据集
- 格式自识别:根据文件扩展名自动选择对应的数据解析器
- 内存优化:支持流式读取,避免全量数据加载的内存压力
实现原理
在底层实现上,Axolotl利用了Hugging Face datasets库的数据加载能力。当检测到本地文件路径时,会自动:
- 通过文件扩展名识别数据格式
- 调用对应的数据集构建器(DatasetBuilder)
- 应用统一的数据预处理管道
对于JSONL格式,每行作为一个独立样本处理,这种设计特别适合:
- 分布式训练场景
- 实时生成的数据流
- 需要增量更新的训练任务
最佳实践建议
- 数据预处理:建议在训练前对JSON字段进行标准化处理
- 文件组织:超过1GB的数据集建议分片存储
- 格式选择:对于数值型数据,Parquet格式具有更好的I/O性能
- 验证检查:首次加载时应抽样检查数据解析正确性
未来展望
虽然当前版本已解决本地文件系统支持,但云存储集成仍在规划中。后续版本可能会增加对AWS S3、Google Cloud Storage等对象存储的支持,这将进一步方便企业级用户的模型训练工作流。
对于需要立即使用云存储的用户,目前可以通过挂载为本地文件系统的方式临时解决,但需要注意网络延迟可能带来的性能影响。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C043
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
696
163
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
696
369
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
674
Ascend Extension for PyTorch
Python
242
279
React Native鸿蒙化仓库
JavaScript
270
328