Fluid Framework v2.32.0 版本深度解析:容器优化与树形数据结构增强
项目简介
Fluid Framework 是微软开发的一个开源分布式实时协作框架,它通过提供数据同步和协作功能,使开发者能够轻松构建多人实时协作应用。该框架采用基于操作转换(OT)的算法来保证数据一致性,并支持多种后端存储服务。
核心特性更新
默认支持分离容器中的 Blob 存储
在 v2.32.0 版本中,Fluid Framework 对 Blob 存储处理进行了重要改进。现在,当容器处于分离状态(detached)时,系统会自动提供 Blob 存储支持,无需开发者手动配置 detachedBlobStorage
参数。这一变化简化了开发流程,减少了配置复杂性。
技术实现上,框架内部现在默认集成了内存 Blob 存储功能。如果开发者需要保留旧有行为,可以通过设置 Fluid.Container.MemoryBlobStorageEnabled
为 false
来禁用此功能。但需要注意的是,这一配置选项和原有的 IDetachedBlobStorage
接口都将在未来的 2.40.0 版本中被移除。
数据存储和 DDS 的短 ID 支持
为了优化性能和减少存储空间占用,新版本引入了短 ID 支持机制。当开发者在 IContainerRuntimeOptions
中设置 enableRuntimeIdCompressor:"on"
时,系统会为数据存储(DataStores)和分布式数据结构(DDSes)生成更短的标识符。
这一改进带来了多重好处:
- 显著减小了摘要(summary)和快照(snapshot)的大小
- 降低了内存占用
- 提升了运行时性能
SharedTree DDS 增强
树形数据结构 API 清理与重构
v2.32.0 对 SharedTree 的 API 进行了重要重构,引入了新的 TreeSchema
类型,它扩展了原有的 SimpleTreeSchema
但使用 TreeNodeSchema
替代了 SimpleNodeSchema
。同时新增了 TreeViewConfigurationAlpha
类型,实现了新的 TreeSchema
接口。
结构上的主要变化包括:
SimpleTreeSchema
现在使用root
属性替代直接实现SimpleFieldSchema
generateSchemaFromSimpleSchema
现在返回新的TreeSchema
类型- 统一了编码和解析选项为
TreeEncodingOptions
getJsonSchema
方法现在接受ImplicitAllowedTypes
和新的TreeSchemaEncodingOptions
无需兼容视图模式的树内容访问
新版本增加了 ITreeAlpha
接口,允许开发者在不需要兼容视图模式的情况下访问树内容和存储模式。这一特性使得开发者能够以通用方式检查 SharedTree 中保存的内容,无论其具体模式如何。
典型使用场景包括:
- 动态生成适用于任何 SharedTree 的视图
- 实现通用的树内容检查工具
- 构建模式无关的树操作工具
废弃功能说明
移除 ODSP 驱动中的容器包信息参数
createOdspCreateContainerRequest()
方法中的 containerPackageInfo
参数已被标记为废弃,并将在 2.40.0 版本中移除。这一变更简化了 API 设计,将容器包名称的配置移到了 OdspDriverUrlResolverForShareLink
的构造函数中。
技术影响与最佳实践
对于现有项目的升级建议:
- 移除所有对
detachedBlobStorage
的显式配置 - 在性能敏感场景中考虑启用短 ID 功能
- 逐步迁移 SharedTree 相关代码到新的 API 模式
- 更新 ODSP 驱动相关代码,使用新的容器包名称配置方式
对于新项目开发:
- 直接使用默认的 Blob 存储支持
- 在协作场景中优先考虑启用短 ID 功能
- 采用新的 SharedTree API 设计数据模型
- 避免使用已被废弃的 API
总结
Fluid Framework v2.32.0 版本在容器管理、数据存储和树形数据结构方面都带来了重要改进。这些变化既简化了开发者的使用体验,又提升了系统性能和灵活性。特别是对 SharedTree 的增强,为构建复杂的协作数据结构提供了更强大的工具集。建议开发者根据项目需求,合理评估和采用这些新特性,同时注意及时更新已废弃的 API 使用方式。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~052CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0327- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









