WasmEdge项目:将Piper集成为WASI-NN后端的技术探索
在WasmEdge项目中,团队正在探索将Piper文本转语音系统作为WASI-NN插件的新后端。这一技术尝试旨在扩展WasmEdge在人工智能推理领域的能力,特别是在语音合成方向的应用。
WasmEdge目前已经支持多种神经网络后端,包括PyTorch、TensorFlow Lite和llama.cpp等。Piper作为一个高效的本地神经文本转语音系统,其集成将进一步完善WasmEdge的AI能力栈。从技术角度看,这一集成涉及多个层面的考量:
首先,Piper系统本身基于ONNX模型和onnxruntime运行。在讨论中,开发者们深入探讨了是否应该直接支持ONNX作为后端,还是专门为Piper创建独立后端。考虑到WASI-NN API的设计理念是提供通用的机器学习推理接口,最终决定将Piper作为独立后端实现,同时保留未来支持ONNX的可能性。
在实现过程中,团队面临几个关键技术挑战:
- 张量类型支持:Piper使用I64类型张量,而WasmEdge当前主要支持F16、F32、U8和I32类型,需要扩展对I64的支持
- 多后端兼容性:WasmEdge支持同时启用多个WASI-NN后端,但需要考虑依赖管理和构建配置的复杂性
- API设计:需要平衡遵循WASI-NN标准规范和满足Piper特定需求之间的关系
一位开发者已经创建了概念验证实现,展示了如何通过修改WasmEdge代码库来支持Piper后端。该实现通过JSON配置指定模型路径和相关参数,保持了与原始Piper命令行工具相似的接口风格,同时适配WASI-NN的标准工作流程(加载→初始化执行上下文→设置输入→计算→获取输出)。
从架构角度看,这一集成体现了WasmEdge的模块化设计优势。WASI-NN插件作为中间层,既保持了与标准规范的一致性,又能灵活支持各种专用后端。对于像Piper这样具有特定功能需求的系统,开发者可以选择将其实现为独立插件或WASI-NN后端,取决于具体的使用场景和长期维护考虑。
这项技术探索不仅为WasmEdge增加了文本转语音能力,也为社区提供了有价值的参考案例,展示了如何将专用AI系统集成到WebAssembly生态中。未来,随着WASI-NN标准的演进和组件模型规范的成熟,这类集成工作将变得更加规范和高效。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00