SPM 项目使用教程
2024-09-19 05:10:04作者:胡唯隽
1. 项目介绍
SPM(Statistical Parametric Mapping)是一个用于分析脑成像数据序列的开源软件包。它支持多种成像技术,包括功能性磁共振成像(fMRI)、正电子发射断层扫描(PET)、单光子发射计算机断层扫描(SPECT)、脑电图(EEG)和脑磁图(MEG)。SPM 的主要目标是构建和评估空间扩展的统计过程,以测试关于功能成像数据的假设。
SPM 由 UCL(伦敦大学学院)的功能成像实验室开发,是一个免费且开源的软件,旨在促进实验室之间的协作和共同分析方案。
2. 项目快速启动
2.1 安装 SPM
首先,从 GitHub 仓库下载 SPM 项目:
git clone https://github.com/Con6924/SPM.git
cd SPM
2.2 配置环境
确保你已经安装了 MATLAB,因为 SPM 是一个基于 MATLAB 的工具箱。
2.3 运行 SPM
在 MATLAB 中运行以下命令启动 SPM:
spm
2.4 分析数据
SPM 提供了多种数据集供用户练习。你可以从 SPM 官方网站下载这些数据集,并按照教程进行分析。以下是一个简单的 fMRI 数据分析示例:
% 加载数据集
spm_jobman('initcfg');
spm('defaults', 'FMRI');
% 创建一个新的分析作业
matlabbatch{1}.spm.stats.fmri_spec.dir = {'/path/to/output'};
matlabbatch{1}.spm.stats.fmri_spec.timing.units = 'secs';
matlabbatch{1}.spm.stats.fmri_spec.timing.RT = 2;
matlabbatch{1}.spm.stats.fmri_spec.sess.scans = {'/path/to/scans/*.nii'};
matlabbatch{1}.spm.stats.fmri_spec.sess.cond = struct('name', {}, 'onset', {}, 'duration', {}, 'tmod', {}, 'pmod', {});
matlabbatch{1}.spm.stats.fmri_spec.sess.multi = {'/path/to/conditions.mat'};
matlabbatch{1}.spm.stats.fmri_spec.sess.regress = struct('name', {}, 'val', {});
matlabbatch{1}.spm.stats.fmri_spec.sess.multi_reg = {'/path/to/regressors.mat'};
matlabbatch{1}.spm.stats.fmri_spec.sess.hpf = 128;
% 运行作业
spm_jobman('run', matlabbatch);
3. 应用案例和最佳实践
3.1 应用案例
SPM 广泛应用于神经科学研究中,特别是在功能性脑成像领域。例如,研究人员可以使用 SPM 分析 fMRI 数据,以研究大脑在不同任务状态下的活动模式。
3.2 最佳实践
- 数据预处理:在进行统计分析之前,确保对数据进行适当的预处理,包括时间校正、空间标准化和空间平滑。
- 模型设计:合理设计统计模型,确保模型能够准确反映实验设计。
- 结果解释:在解释结果时,注意统计显著性和效应大小,避免过度解读。
4. 典型生态项目
SPM 作为一个开源项目,有许多相关的生态项目和工具箱,以下是一些典型的生态项目:
- FSL(FMRIB Software Library):一个与 SPM 类似的脑成像分析工具包,提供多种功能和工具。
- AFNI(Analysis of Functional NeuroImages):一个用于分析和可视化功能性脑成像数据的工具包。
- Nipype:一个用于连接多个脑成像分析工具的工作流管理系统,支持 SPM 和其他工具的集成。
这些生态项目与 SPM 相互补充,为用户提供了更丰富的分析工具和方法。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0109
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
483
3.58 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
20
暂无简介
Dart
734
176
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
256
108
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.29 K
707
React Native鸿蒙化仓库
JavaScript
294
342
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1