时间序列预测中的迁移学习项目教程
2024-09-21 10:30:54作者:幸俭卉
项目介绍
概述
迁移学习是指在一个大型数据集上预训练一个灵活的模型,然后在其他数据上使用该模型,几乎不需要额外的训练。这是机器学习领域最显著的成就之一,具有许多实际应用。对于时间序列预测,迁移学习技术允许您快速获得预测,避免了准确性和速度之间的权衡。
项目目标
本项目展示了如何生成一个预训练模型,并将其存储为检查点,以便公开使用以预测新时间序列,这些时间序列从未被模型见过。您可以通过访问此演示查看概念验证的实际操作。如果您想使用我们的低延迟API进行预测,可以在此处注册。
贡献方式
您可以通过遵循本笔记本并发送电子邮件至federico[at]nixtla.io来贡献您的预训练模型。您还可以查看此处列出的预训练模型。
项目快速启动
安装依赖
首先,确保您已经安装了必要的依赖项。您可以通过以下命令安装:
pip install -r requirements.txt
下载数据集
接下来,下载所需的数据集。您可以使用以下命令:
curl -L https://example.com/dataset.zip -o dataset.zip
unzip dataset.zip
训练模型
使用以下代码片段训练模型:
from darts import TimeSeries
from darts.models import NBEATSModel
# 加载数据
series = TimeSeries.from_csv('dataset.csv')
train, val = series[:-24], series[-24:]
# 定义模型
model = NBEATSModel(input_chunk_length=30, output_chunk_length=12)
# 训练模型
model.fit(train)
# 预测
predictions = model.predict(n=24, series=train)
应用案例和最佳实践
案例1:航空乘客预测
使用预训练的N-BEATS模型预测航空乘客数量。以下是一个示例代码:
from darts.models import NBEATSModel
from darts.datasets import AirPassengersDataset
# 加载数据
series = AirPassengersDataset().load()
train, val = series[:-24], series[-24:]
# 加载预训练模型
model = NBEATSModel.load('pretrained_model.pth')
# 预测
predictions = model.predict(n=24, series=train)
案例2:电力负荷预测
使用预训练的N-BEATS模型预测电力负荷。以下是一个示例代码:
from darts.models import NBEATSModel
from darts.datasets import ElectricityDataset
# 加载数据
series = ElectricityDataset().load()
train, val = series[:-24], series[-24:]
# 加载预训练模型
model = NBEATSModel.load('pretrained_model.pth')
# 预测
predictions = model.predict(n=24, series=train)
典型生态项目
项目1:Darts
Darts是一个用于时间序列预测的Python库,支持多种模型和数据处理工具。它是一个非常适合与本项目结合使用的生态项目。
项目2:PyTorch
PyTorch是一个开源的深度学习框架,广泛用于构建和训练神经网络模型。本项目中的模型训练和预测依赖于PyTorch。
项目3:LightGBM
LightGBM是一个高效的梯度提升框架,适用于回归和分类任务。在本项目的某些案例中,LightGBM被用于构建和训练模型。
通过结合这些生态项目,您可以更高效地进行时间序列预测和迁移学习。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C037
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0113
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 高效验证码识别解决方案:OCRServer资源文件深度解析与应用指南 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
432
3.29 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
351
Ascend Extension for PyTorch
Python
237
271
暂无简介
Dart
689
162
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
327
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
79
37
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
671