首页
/ **TensorNet**:以卓越性能颠覆广告推荐领域的分布式训练框架

**TensorNet**:以卓越性能颠覆广告推荐领域的分布式训练框架

2024-08-07 17:09:05作者:谭伦延

项目介绍

在深度学习的大潮中,TensorNet应运而生,它是一个基于TensorFlow并针对广告推荐等大规模稀疏场景进行深度优化的分布式训练框架。通过革命性的设计思路和技术突破,TensorNet致力于帮助广大开发者在极短的时间内训练出拥有千亿级稀疏参数的超大型模型,解锁复杂模型训练的新纪元。

项目技术分析

TensorNet训练架构重塑

在传统TensorFlow异步训练架构的基础上,TensorNet进行了大胆创新,提出了独特的异步训练架构,包括将sparse参数和dense参数分别由不同parameter server管理;摒弃独立的parameter server节点,转而在每个worker内部置sparse和dense parameter server;采用分布式哈希表智能分配sparse参数,以及优化网络请求频率,大幅度提高了模型训练效率和灵活性。

离线训练中的embeddings优化技巧

面对大规模稀疏场景下的高维问题,TensorNet巧妙地引入了一个适应于特定batch大小的小型embedding矩阵,替代了传统的庞大embedding矩阵需求。这种优化策略不仅显著降低了内存消耗,更利用parameter server机制扩展了稀疏特征的维度范围至近乎无限,极大增强了模型表达力。

实现Inference高效简便

TensorNet的设计充分考虑了实际应用的需求,特别是在Inference阶段。仅需关注模型的核心推理逻辑,即第二层之后的部分,第一层的embedding环节完全可通过离线导出的sparse embedding字典来替代,这一策略简化了线上预测流程,提供了高度可移植性与执行效率。

应用场景概述

  • 在广告推荐领域,TensorNet能够精准捕捉用户行为模式与兴趣点,提供个性化推荐服务,推动业务增长。
  • 大规模数据分析任务中,如社交网络分析或电商产品匹配,TensorNet强大的稀疏参数处理能力使其成为首选工具。

项目亮点

  • 高性能分布式训练:显著降低网络通信瓶颈,加快模型收敛速度。
  • 内存与计算资源节约:通过减少embedding矩阵大小,有效节省硬件成本。
  • 易于集成与部署:详尽的文档与教程确保了新用户快速上手与无缝迁移。
  • 扩展性:几乎不受限制的稀疏特征支持度,适用于各种高维稀疏场景。

综上所述,TensorNet凭借其先进的技术和独特的优化策略,正逐步成为大规模稀疏场景模型训练的优选解决方案。无论是追求极致性能的数据科学家还是专注于实际应用的产品团队,都将从中获益匪浅。加入我们,共同探索深度学习的无限可能!


探索更多关于TensorNet的技术细节与实际案例,请访问我们的官方文档:点击这里。期待您的加入,一起塑造未来AI世界!

热门项目推荐
相关项目推荐

项目优选

收起
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
824
0
redis-sdkredis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
375
32
advanced-javaadvanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learnerqwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
8
1
Yi-CoderYi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-VueRuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
markdown4cjmarkdown4cj
一个markdown解析和展示的库
Cangjie
10
0