FunAudioLLM/SenseVoice项目在ESC50数据集上的结果复现技巧
2025-06-07 00:39:19作者:庞队千Virginia
在音频事件检测领域,FunAudioLLM/SenseVoice项目展现出了强大的性能表现。然而,许多研究者在尝试复现该项目在ESC50数据集上的结果时遇到了困难。本文将深入分析其中的技术细节,并提供完整的解决方案。
核心问题分析
项目默认的解码配置存在一个关键特性:事件检测的精确度(precision)往往远高于召回率(recall),这直接导致了F1分数的下降。这种现象在音频事件检测任务中尤为常见,因为不同音频事件之间存在相互竞争的关系。
技术解决方案
通过修改事件token的后验概率分布,可以显著提升模型性能。具体实现需要针对以下9类音频事件进行特殊处理:
- 语音(Speech)
- 背景音乐(BGM)
- 笑声(Laughter)
- 掌声(Applause)
- 哭声(Cry)
- 喷嚏声(Sneeze)
- 呼吸声(Breath)
- 咳嗽声(Cough)
- 歌声(Sing)
实现细节
在代码层面,需要修改CTC输出的logits分布。关键实现步骤如下:
# 定义需要特殊处理的事件token列表
event_list = [24993, 24995, 24997, 24999, 25010, 25011, 25012, 25013, 25014]
# 为每类事件设置增益系数
event_gain = [1e-9, 1e-9, 1, 10, 3, 3, 1, 3, 1e-9]
# 修改logits分布
import math
for pos, ga in zip(event_list, event_gain):
ctc_logits[:, :, pos] += math.log(ga)
注意事项
- 语言设置建议使用"auto"而非"nospeech"
- 不同事件token之间存在竞争关系,无法同时达到最优
- 增益系数的设置需要根据具体应用场景进行调整
- 该方法与PANNs、BEATs等AED模型的处理方式有本质区别
性能优化建议
对于实际应用场景,建议:
- 根据目标事件的优先级调整增益系数
- 对特定事件(如咳嗽声)可以适当提高增益
- 对不关注的事件(如背景音乐)可以降低增益
- 通过交叉验证确定最优参数组合
通过以上技术调整,研究者可以成功复现项目在ESC50数据集上的优秀表现,并为后续的音频事件检测研究提供可靠基准。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
523
3.72 K
Ascend Extension for PyTorch
Python
328
387
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
876
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
187
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
136