KagTest 的安装和配置教程
1、项目的基础介绍和主要的编程语言
KagTest 是一个开源框架,旨在利用知识图谱和向量检索的优势来增强大型语言模型和知识图谱,以解决检索增强生成(RAG)技术中的挑战。该项目的主要编程语言是 Python,它是一种广泛使用的高级编程语言,易于学习和使用。
2、项目使用的关键技术和框架
KagTest 使用了以下关键技术和框架:
- OpenSPG: OpenSPG 是一个基于 SPG(Semantic-enhanced Programmable Graph)框架研发的知识图谱引擎,由蚂蚁集团和 OpenKG 联合推出。它能够构建和应用知识图谱,并提供相关服务。
- KAG (Knowledge Augmented Generation): KAG 是 OpenSPG 发布 v0.5 版本中推出的知识增强生成框架,旨在解决 RAG 技术中的挑战,例如向量相似度与知识推理相关性差距大、对知识逻辑不敏感等问题。
3、项目安装和配置的准备工作和详细的安装步骤
3.1 准备工作
在安装 KagTest 之前,请确保您已经安装了以下依赖项:
- Python 3.8 或更高版本: KagTest 需要 Python 3.8 或更高版本。
- Git: 用于克隆 KagTest 项目的代码库。
- Docker: 用于部署 OpenSPG-Server。
3.2 安装步骤
-
克隆项目代码库
使用以下命令克隆 KagTest 项目的代码库:
git clone https://github.com/NanGePlus/KagTest.git cd KagTest
-
安装依赖项
在 KagTest 项目目录中,运行以下命令安装项目所需的依赖项:
pip install -e .
确认安装成功后,可以运行以下命令验证:
knext --version
-
配置项目
在 KagTest 项目目录中,将
other/config
目录下的example.cfg
文件复制到根目录,并根据您的业务需求修改配置参数,例如命名空间、嵌入和 LLM 配置参数。 -
初始化项目
在命令行中,运行以下命令初始化项目:
knext project create --config_path ./example.cfg
初始化项目完成后,进入对应的项目文件夹,并根据实际业务需求调整 schema,调整完成后执行
knext schema commit
命令提交 schema。 -
构建索引
将文档复制到项目文件夹中的
builder/data
目录下,支持 txt、pdf、markdown、docx、json 和 csv 等文件格式。然后,进入项目文件夹的builder
目录,运行python indexer.py
命令开始构建索引。 -
检索
构建索引成功后,您可以登录到 http://127.0.0.1:8887/ 或 http://127.0.0.1:7474/browser/ 查看知识图谱。图数据库的账号和密码分别为
neo4j
和neo4j@openspg
。接下来,进入项目文件夹的
solver
目录,运行python query.py
命令开始检索。根据您的业务需求,您可以设置相关的 prompt 内容,例如logic_form_plan.py
、question_ner.py
和resp_generator.py
。您也可以在产品端进行测试,访问 http://127.0.0.1:8887/。
至此,您已完成 KagTest 的安装和配置。祝您使用愉快!
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava03GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0289- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









