KagTest 的安装和配置教程
1、项目的基础介绍和主要的编程语言
KagTest 是一个开源框架,旨在利用知识图谱和向量检索的优势来增强大型语言模型和知识图谱,以解决检索增强生成(RAG)技术中的挑战。该项目的主要编程语言是 Python,它是一种广泛使用的高级编程语言,易于学习和使用。
2、项目使用的关键技术和框架
KagTest 使用了以下关键技术和框架:
- OpenSPG: OpenSPG 是一个基于 SPG(Semantic-enhanced Programmable Graph)框架研发的知识图谱引擎,由蚂蚁集团和 OpenKG 联合推出。它能够构建和应用知识图谱,并提供相关服务。
- KAG (Knowledge Augmented Generation): KAG 是 OpenSPG 发布 v0.5 版本中推出的知识增强生成框架,旨在解决 RAG 技术中的挑战,例如向量相似度与知识推理相关性差距大、对知识逻辑不敏感等问题。
3、项目安装和配置的准备工作和详细的安装步骤
3.1 准备工作
在安装 KagTest 之前,请确保您已经安装了以下依赖项:
- Python 3.8 或更高版本: KagTest 需要 Python 3.8 或更高版本。
- Git: 用于克隆 KagTest 项目的代码库。
- Docker: 用于部署 OpenSPG-Server。
3.2 安装步骤
-
克隆项目代码库
使用以下命令克隆 KagTest 项目的代码库:
git clone https://github.com/NanGePlus/KagTest.git cd KagTest
-
安装依赖项
在 KagTest 项目目录中,运行以下命令安装项目所需的依赖项:
pip install -e .
确认安装成功后,可以运行以下命令验证:
knext --version
-
配置项目
在 KagTest 项目目录中,将
other/config
目录下的example.cfg
文件复制到根目录,并根据您的业务需求修改配置参数,例如命名空间、嵌入和 LLM 配置参数。 -
初始化项目
在命令行中,运行以下命令初始化项目:
knext project create --config_path ./example.cfg
初始化项目完成后,进入对应的项目文件夹,并根据实际业务需求调整 schema,调整完成后执行
knext schema commit
命令提交 schema。 -
构建索引
将文档复制到项目文件夹中的
builder/data
目录下,支持 txt、pdf、markdown、docx、json 和 csv 等文件格式。然后,进入项目文件夹的builder
目录,运行python indexer.py
命令开始构建索引。 -
检索
构建索引成功后,您可以登录到 http://127.0.0.1:8887/ 或 http://127.0.0.1:7474/browser/ 查看知识图谱。图数据库的账号和密码分别为
neo4j
和neo4j@openspg
。接下来,进入项目文件夹的
solver
目录,运行python query.py
命令开始检索。根据您的业务需求,您可以设置相关的 prompt 内容,例如logic_form_plan.py
、question_ner.py
和resp_generator.py
。您也可以在产品端进行测试,访问 http://127.0.0.1:8887/。
至此,您已完成 KagTest 的安装和配置。祝您使用愉快!
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0370Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0102AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选









