Go-Carbon 使用教程
1. 项目介绍
Go-Carbon 是一个用 Go 语言实现的 Graphite/Carbon 服务器,采用经典的架构:Agent -> Cache -> Persister。它旨在提供高性能的指标存储和查询服务,适用于大规模的监控和数据分析场景。Go-Carbon 支持多种协议(如 TCP、UDP、Pickle、HTTP 等)接收指标数据,并将其持久化到 Whisper 数据库中。
主要特性
- 高性能: Go-Carbon 在各种条件下都表现出色,尤其是在高负载情况下。
- 多协议支持: 支持 TCP、UDP、Pickle、HTTP 等多种协议接收指标数据。
- 缓存和持久化: 通过缓存机制提高数据写入效率,并支持多种持久化策略。
- 在线配置迁移: 支持在线配置和模式迁移,确保历史数据的一致性。
- 丰富的配置选项: 提供多种配置选项,满足不同场景的需求。
2. 项目快速启动
2.1 安装 Go-Carbon
首先,确保你已经安装了 Go 语言环境(版本 >= 1.8)。然后,通过以下命令克隆并编译 Go-Carbon:
git clone https://github.com/go-graphite/go-carbon.git
cd go-carbon
make
编译完成后,你将得到一个可执行文件 go-carbon。
2.2 配置 Go-Carbon
Go-Carbon 的配置文件通常位于 /etc/go-carbon/go-carbon.conf。以下是一个简单的配置示例:
[common]
user = "carbon"
graph-prefix = "carbon.agents.{host}"
metric-endpoint = "local"
metric-interval = "1m0s"
max-cpu = 4
[whisper]
data-dir = "/var/lib/graphite/whisper"
schemas-file = "/etc/go-carbon/storage-schemas.conf"
aggregation-file = "/etc/go-carbon/storage-aggregation.conf"
workers = 8
max-updates-per-second = 0
flock = true
[cache]
max-size = 1000000
write-strategy = "max"
[udp]
listen = ":2003"
enabled = true
[tcp]
listen = ":2003"
enabled = true
[pickle]
listen = ":2004"
max-message-size = 67108864
enabled = true
2.3 启动 Go-Carbon
配置完成后,可以通过以下命令启动 Go-Carbon:
./go-carbon -config /etc/go-carbon/go-carbon.conf
3. 应用案例和最佳实践
3.1 监控系统
Go-Carbon 可以作为监控系统的后端存储,接收来自各种监控代理的指标数据,并将其持久化到 Whisper 数据库中。通过 Graphite-web 或 Grafana 等前端工具,用户可以方便地查询和可视化监控数据。
3.2 日志分析
在日志分析场景中,Go-Carbon 可以接收日志聚合器(如 Fluentd 或 Logstash)发送的指标数据,并将其存储在 Whisper 中。通过结合 Grafana 等工具,用户可以对日志数据进行实时分析和可视化。
3.3 性能优化
为了提高 Go-Carbon 的性能,可以调整操作系统的相关参数,如 vm.dirty_ratio、vm.dirty_background_ratio 和 vm.dirty_expire_centisecs,以确保数据写入不会阻塞。
4. 典型生态项目
4.1 Graphite-web
Graphite-web 是一个用于查询和可视化指标数据的前端工具。它与 Go-Carbon 配合使用,可以提供强大的数据查询和可视化功能。
4.2 Grafana
Grafana 是一个开源的度量分析和可视化套件,支持多种数据源,包括 Graphite。通过 Grafana,用户可以创建丰富的仪表盘,实时监控系统状态。
4.3 Prometheus
Prometheus 是一个开源的监控和报警工具,支持多种数据存储后端。虽然 Prometheus 主要使用自己的存储引擎,但也可以通过适配器将数据存储到 Go-Carbon 中,实现数据的长期存储和查询。
通过以上模块的介绍,你可以快速上手 Go-Carbon,并了解其在实际应用中的最佳实践和生态项目。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00