【亲测免费】 Tianshou 强化学习平台教程
2026-01-19 10:51:09作者:冯爽妲Honey
项目介绍
Tianshou(天授)是一个基于纯 PyTorch 的强化学习平台。与现有的主要基于 TensorFlow 的强化学习库不同,Tianshou 提供了快速的框架和友好的 Python API,用于构建深度强化学习代理。Tianshou 支持多种强化学习算法,并且具有多 GPU 训练的能力。
项目快速启动
安装
你可以通过以下命令从 PyPI 安装 Tianshou:
pip install tianshou
如果你使用 Anaconda 或 Miniconda,可以通过以下命令从 conda-forge 安装 Tianshou:
conda install tianshou -c conda-forge
快速启动示例
以下是一个简单的 DQN 示例代码:
import gym
import tianshou as ts
from tianshou.policy import DQNPolicy
from tianshou.trainer import offpolicy_trainer
from tianshou.data import Collector, ReplayBuffer
# 创建环境
env = gym.make('CartPole-v0')
train_envs = ts.env.DummyVectorEnv([lambda: gym.make('CartPole-v0') for _ in range(8)])
test_envs = ts.env.DummyVectorEnv([lambda: gym.make('CartPole-v0') for _ in range(100)])
# 定义策略
net = ts.net.DQN((env.observation_space.shape[0],), env.action_space.n)
optim = ts.optim.Adam(net.parameters(), lr=1e-3)
policy = DQNPolicy(net, optim, discount_factor=0.99)
# 数据收集器和回放缓冲区
buffer = ReplayBuffer(20000)
train_collector = Collector(policy, train_envs, buffer)
test_collector = Collector(policy, test_envs)
# 训练
result = offpolicy_trainer(
policy, train_collector, test_collector,
max_epoch=10, step_per_epoch=10000, collect_per_step=10,
batch_size=64, test_in_train=False
)
print(result)
应用案例和最佳实践
案例一:多智能体强化学习
Tianshou 支持多智能体强化学习(MARL),可以用于解决多个智能体在同一环境中的协同或竞争问题。以下是一个简单的多智能体示例:
import tianshou as ts
from tianshou.policy import MultiAgentPolicyManager, DQNPolicy
from tianshou.data import Collector
# 创建环境
env = ts.env.MultiAgentEnv('simple_spread')
# 定义策略
policies = [DQNPolicy for _ in range(env.n_agents)]
manager = MultiAgentPolicyManager(policies, env)
# 数据收集器
collector = Collector(manager, env)
# 训练
result = ts.trainer.onpolicy_trainer(
manager, collector,
max_epoch=10, step_per_epoch=10000, collect_per_step=10,
batch_size=64, test_in_train=False
)
print(result)
案例二:自定义强化学习算法
Tianshou 允许用户自定义强化学习算法。以下是一个自定义算法的示例:
import tianshou as ts
from tianshou.policy import BasePolicy
class CustomPolicy(BasePolicy):
def __init__(self, net, optim):
super().__init__()
self.net = net
self.optim = optim
def forward(self, batch, state=None):
# 自定义前向传播逻辑
pass
def learn(self, batch):
# 自定义学习逻辑
pass
# 创建环境
env = gym.make('CartPole-v0')
# 定义网络和优化器
net = ts.net.MLP((env.observation_space.shape[0],), env.action_space.n)
optim = ts.optim.Adam(net.parameters(), lr=1e-3)
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0131
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
496
3.64 K
Ascend Extension for PyTorch
Python
300
338
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
307
131
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
868
479
暂无简介
Dart
744
180
React Native鸿蒙化仓库
JavaScript
297
346
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
66
20
仓颉编译器源码及 cjdb 调试工具。
C++
150
882