Liquibase在新建机器上执行变更集时挂起问题的分析与解决
问题背景
Liquibase作为一款流行的数据库变更管理工具,在4.29版本中出现了一个影响性能的关键问题:当在新创建的虚拟机或Docker容器等环境中执行大量变更集时,整个进程会出现长时间挂起现象,几乎没有任何进展。通过检查Linux系统的熵池状态可以发现,在挂起期间/proc/sys/kernel/random/entropy_avail的值经常显示为0。
问题根源分析
这个问题源于Liquibase内部对随机数生成机制的变更。在之前的版本中,Liquibase使用Java标准的SecureRandom来生成执行范围ID(Scope ID)。而在4.29版本中,代码修改为使用Apache Commons Lang库中的RandomStringUtils工具类来生成这些随机字符串。
Apache Commons Lang在3.16.0版本中做出了一个重大变更:出于"默认安全"的考虑,将RandomStringUtils的底层实现从非阻塞的ThreadLocalRandom改为使用SecureRandom.getInstanceStrong()。这个方法会使用系统中最强的随机数生成器,但同时也会在系统熵不足时无限制地阻塞等待。
技术细节解析
-
熵池机制:Linux系统通过收集各种硬件事件(如键盘输入、鼠标移动、磁盘I/O等)来维护一个熵池,用于生成高质量的随机数。新创建的虚拟机或容器通常缺乏这些熵源,导致熵池迅速耗尽。
-
随机数生成器差异:
- ThreadLocalRandom:基于线程本地状态的高性能伪随机数生成器,不依赖系统熵
- SecureRandom:密码学安全的随机数生成器,会消耗系统熵
- SecureRandom.getInstanceStrong():使用系统最强的随机源,对熵要求最高
-
性能影响:SecureRandom.getInstanceStrong()不仅比ThreadLocalRandom慢约20倍,还会在熵不足时完全阻塞进程。
解决方案
Liquibase社区通过以下方式解决了这个问题:
- 完全移除了对Apache Commons RandomStringUtils的依赖
- 直接使用Java的ThreadLocalRandom来生成Scope ID
- 实现了自定义的随机字符串生成逻辑,既保证了性能又避免了熵池依赖
这种解决方案具有以下优势:
- 不受Apache Commons版本更新的影响
- 不会因系统熵不足而阻塞
- 保持了较高的性能表现
- 仍然满足Scope ID的随机性要求
最佳实践建议
对于使用Liquibase的用户,特别是在容器化环境中:
- 及时升级到包含此修复的Liquibase版本
- 如果暂时无法升级,可以强制依赖Apache Commons Lang 3.14版本
- 在容器环境中考虑安装haveged等熵生成工具作为临时解决方案
- 监控系统熵池状态,特别是在自动化部署流程中
总结
这个问题展示了软件依赖管理中的一个典型挑战:上游库的变更可能无意中引入性能或稳定性问题。Liquibase团队通过分析问题根源、理解不同随机数生成器的特性,最终选择了最合适的解决方案,既解决了问题又保持了工具的核心价值。这也提醒开发者需要密切关注依赖库的变更日志,特别是涉及安全性和性能的关键修改。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00