ESLint Stylistic 项目中关于导出语句与代码间距规则的探讨
背景介绍
在 JavaScript 和 TypeScript 开发中,代码风格一致性对于团队协作和代码可维护性至关重要。ESLint Stylistic 作为代码风格检查工具,提供了丰富的规则来规范代码格式。其中,padding-line-between-statements 规则用于控制不同语句之间的空行间距,是保持代码整洁性的重要工具。
问题发现
在实际使用中,开发者发现了一个关于导出语句与代码间距规则的潜在问题。当变量声明、函数定义等语句被 export 关键字修饰时,原先为这些语句配置的间距规则不再生效。例如:
const a = 'a';
const b = 'b';  // 符合规则:单行const之间不需要空行
export const c = 'c';  // 这里突然需要空行了
export const d = 'd';  // 不符合预期
技术分析
现有规则机制
ESLint Stylistic 的 padding-line-between-statements 规则支持多种语句类型配置,包括:
- 变量声明:
var、let、const - 函数相关:
function、function-overload - 类型定义:
type、interface、enum - 类定义:
class - 导出语句:
export、default 
规则还支持细粒度控制,可以区分单行(singleline-)和多行(multiline-)声明。
导出语句的特殊性
问题核心在于,当基础语句(如 const、function 等)被 export 修饰时,它们会被识别为 export 类型语句,而非原来的基础类型。这导致:
- 为 
const配置的间距规则不会应用于export const - 无法区分单行和多行的导出声明
 - 需要为导出语句单独配置规则,造成冗余
 
解决方案演进
自动继承方案
最初提出的解决方案是让导出语句自动继承其基础语句的间距规则。例如:
export const继承const的规则export function继承function的规则
这种方案的优势在于配置简洁,但可能存在规则优先级冲突的问题。
显式声明方案
另一种方案是引入新的语句类型前缀,如:
exported-constexported-functionexported-singleline-let
虽然提供了更精细的控制,但会导致规则配置复杂化,增加维护成本。
实际采纳方案
最终项目采用了更简洁的解决方案:通过增强现有规则实现,使基础语句的规则也能适用于其导出形式。这种折中方案:
- 保持了配置的简洁性
 - 解决了大部分常见用例
 - 避免了引入复杂的语法
 
最佳实践建议
基于这一改进,开发者可以:
- 优先为基本语句类型配置间距规则
 - 仅在需要特殊处理时单独配置导出语句
 - 利用单行/多行区分保持代码一致性
 
例如,推荐配置方式:
{
  rules: {
    '@stylistic/padding-line-between-statements': [
      'error',
      // 基础规则
      { blankLine: 'always', prev: '*', next: 'function' },
      { blankLine: 'never', prev: 'singleline-const', next: 'singleline-const' },
      // 导出特殊处理
      { blankLine: 'always', prev: '*', next: 'export' }
    ]
  }
}
总结
ESLint Stylistic 项目中关于导出语句间距规则的改进,体现了开源社区对开发者实际需求的快速响应。这一变化使得代码风格检查更加智能和灵活,帮助开发团队在保持代码整洁性的同时,减少了不必要的配置负担。理解这一机制有助于开发者更有效地利用 ESLint 工具,提升代码质量和团队协作效率。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00