ClickHouse Operator 中如何配置忽略特定注解标签
在 Kubernetes 生态系统中,ClickHouse Operator 是一个用于管理 ClickHouse 集群的强大工具。本文将深入探讨一个常见的使用场景:如何配置 ClickHouse Operator 忽略特定的注解标签,以避免不必要的 Prometheus 指标系列膨胀问题。
问题背景
当使用 ClickHouse Operator 时,许多团队会通过自定义注解来标记和跟踪 ClickHouseInstallation 资源。这些注解可能包含构建信息、版本控制数据或其他内部元数据。然而,这些注解会被 Operator 自动收集并作为 Prometheus 指标的标签,导致每次资源更新时都会创建新的指标系列。
这种机制虽然在某些场景下有用,但当注解包含频繁变化的值(如时间戳、构建哈希等)时,会导致 Prometheus 中指标系列数量急剧增长,造成存储压力并可能影响监控系统的性能。
解决方案演进
ClickHouse Operator 的早期版本中,忽略特定注解的功能是硬编码实现的,用户无法自定义需要忽略的注解列表。这限制了用户对监控指标的精细控制能力。
在最新发布的 0.24.1 版本中,Operator 引入了灵活的配置选项,允许用户明确指定需要从指标标签中排除的注解。这一改进通过 Operator 的配置规范实现,为用户提供了更大的灵活性。
配置方法
要配置 ClickHouse Operator 忽略特定注解,您需要在 Operator 的配置中添加以下内容:
spec:
metrics:
labels:
exclude:
- annotation_to_exclude_1
- annotation_to_exclude_2
这种配置方式简单直观,支持同时排除多个注解。被排除的注解将不会出现在任何由 Operator 生成的 Prometheus 指标标签中。
最佳实践
-
识别动态注解:首先识别那些包含频繁变化值的注解,如时间戳、构建ID等,这些通常是需要排除的主要候选。
-
保持一致性:确保在所有环境中使用相同的排除列表,以避免监控数据的不一致。
-
平衡粒度:在排除过多注解(可能导致监控粒度不足)和保留过多注解(可能导致指标膨胀)之间找到平衡。
-
文档记录:团队内部应记录哪些注解被排除以及排除的原因,便于后续维护和理解监控数据。
技术实现原理
在底层实现上,ClickHouse Operator 在处理指标时会检查资源对象的注解列表,并与配置的排除列表进行比对。匹配的注解会被过滤掉,不会出现在最终的指标标签中。这种过滤发生在指标生成阶段,因此不会影响注解在 Kubernetes 系统中的其他用途。
总结
ClickHouse Operator 0.24.1 版本引入的注解排除功能为用户提供了更精细的监控指标控制能力。通过合理配置,可以有效避免因动态注解导致的 Prometheus 指标系列膨胀问题,同时保留真正有监控价值的标签信息。这一改进使得 ClickHouse Operator 在复杂生产环境中的适用性得到了进一步提升。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00