Pyro-PPL中基于SVI模型的WAIC实现方法
2025-05-26 18:49:31作者:郜逊炳
什么是WAIC
WAIC(Watanabe-Akaike Information Criterion)是一种广泛用于贝叶斯模型比较的信息准则,它通过评估模型在预测新数据方面的表现来比较不同模型的优劣。与传统的AIC和BIC不同,WAIC特别适合评估贝叶斯层次模型,因为它能够充分考虑后验分布的不确定性。
Pyro-PPL中的模型评估挑战
在Pyro概率编程语言(Pyro-PPL)中,用户经常使用随机变分推断(SVI)配合TraceEnum_ELBO来拟合模型。然而,当需要评估模型质量时,官方文档中并没有直接提供计算WAIC的便捷方法。虽然Pyro的stats模块包含了一个通用的WAIC计算函数,但它需要模型的对数似然作为输入,而如何从已拟合的Pyro模型中获取这些对数似然值并不直观。
解决方案实现
针对这一问题,开发者可以通过自定义一个sample_likelihood()函数来解决。这个函数的核心思想是从拟合好的变分后验分布中采样参数,然后在观测数据上计算模型的对数似然。
def sample_likelihood(model, guide, num_samples, *args, **kwargs):
"""
从拟合模型中采样计算对数似然
参数:
model: 定义好的Pyro模型
guide: 拟合好的变分分布
num_samples: 采样次数
*args: 传递给模型的参数
**kwargs: 传递给模型的关键字参数
返回:
log_likelihoods: 形状为(num_samples,)的对数似然数组
"""
log_likelihoods = []
for _ in range(num_samples):
# 从变分后验中采样参数
trace = poutine.trace(guide).get_trace(*args, **kwargs)
# 使用采样参数计算模型对数似然
model_trace = poutine.trace(
poutine.replay(model, trace)
).get_trace(*args, **kwargs)
# 提取对数似然项
log_likelihood = 0.0
for node in model_trace.nodes.values():
if node["type"] == "sample" and not node["is_observed"]:
log_likelihood += node["fn"].log_prob(node["value"]).sum()
log_likelihoods.append(log_likelihood)
return torch.stack(log_likelihoods)
WAIC计算步骤
获得对数似然样本后,计算WAIC就变得直接了:
- 使用上述函数获取足够数量的对数似然样本
- 将这些样本传递给Pyro的
waic()函数 - 比较不同模型的WAIC值,值越小表示模型越好
# 假设已有拟合好的model和guide
log_likelihood_samples = sample_likelihood(model, guide, num_samples=1000, data=data)
# 计算WAIC
waic_value = pyro.ops.stats.waic(log_likelihood_samples)
实现注意事项
- 采样数量:需要足够多的采样来准确估计后验分布,通常1000-5000次为宜
- 计算效率:对于大型模型或大数据集,可能需要优化计算过程
- 模型结构:确保模型中的所有随机变量都被正确捕获在对数似然计算中
- 验证:建议与交叉验证等其他模型评估方法结合使用
扩展应用
这种实现方法不仅适用于WAIC计算,还可以扩展到其他需要后验预测检查的场景,如:
- 计算后验预测分布
- 进行模型校准检查
- 实现交叉验证
- 计算其他信息准则如LOO(留一法交叉验证)
通过这种灵活的实现方式,Pyro用户可以更全面地评估和比较不同概率模型的性能,从而做出更明智的建模决策。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
414
3.18 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
Ascend Extension for PyTorch
Python
228
258
暂无简介
Dart
679
160
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
325
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
React Native鸿蒙化仓库
JavaScript
265
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
492