AutoML-Toolkit 自动化机器学习工具包深度解析
2025-06-19 09:56:22作者:段琳惟
概述
AutoML-Toolkit 是一个基于 Apache Spark 的自动化机器学习解决方案,它集成了数据预处理、特征工程、超参数调优和模型跟踪等完整机器学习流程。该工具包特别适合需要在分布式环境中进行大规模机器学习任务的数据科学家和工程师。
核心功能架构
AutoML-Toolkit 采用分层架构设计,提供三种不同级别的API访问方式:
1. 全自动化模式(高层API)
通过 FamilyRunner 对象和 Configuration Generator 实现一键式机器学习流程,只需提供Spark DataFrame和配置数组即可完成从数据准备到模型训练的全过程。
2. 中等自动化模式
允许用户单独使用各个功能模块,如数据预处理(DataPrep)、自动化运行器(AutomationRunner)和特征重要性分析(FeatureImportances)等。
3. 底层API
提供超参数调优等独立功能的细粒度控制接口。
全自动化模式详解
基本使用示例
import com.databricks.labs.automl.executor.config.ConfigurationGenerator
import com.databricks.labs.automl.executor.FamilyRunner
val runName = "我的自动化模型运行"
val 配置覆盖 = Map(
"labelCol" -> "我的标签列",
"tunerParallelism" -> 6,
"tunerKFold" -> 3,
"scoringMetric" -> "areaUnderROC",
"tunerNumberOfGenerations" -> 6
)
val 运行配置 = Array("RandomForest", "LogisticRegression", "XGBoost")
.map(x => ConfigurationGenerator.generateConfigFromMap(x, "classifier", 配置覆盖))
val 管道运行器 = FamilyRunner(spark.table("我的数据表"), 运行配置).executeWithPipeline()
关键配置参数说明
- labelCol:指定预测目标列名
- tunerParallelism:设置并行调优任务数
- tunerKFold:交叉验证折数
- scoringMetric:评估指标,如"areaUnderROC"等
- tunerNumberOfGenerations:遗传算法迭代次数
返回结果结构
执行结果返回FamilyFinalOutputWithPipeline类型,包含三个主要部分:
- familyFinalOutput:包含模型报告、代际报告等详细信息
- bestPipelineModel:最佳模型的SparkML管道
- bestMlFlowRunId:MLflow运行ID映射
配置生成器详解
配置生成器提供了覆盖默认值的灵活方式,避免了复杂的嵌套配置。
支持的模型类型
- XGBoost:支持分类和回归
- RandomForest:随机森林
- GBT:梯度提升树
- Trees:决策树
- LinearRegression:线性回归
- LogisticRegression:逻辑回归
- MLPC:多层感知机
- SVM:支持向量机
通用配置参数
- labelCol:预测目标列(必须设置)
- featuresCol:特征列名(默认为"features")
- dateTimeConversionType:日期时间转换方式("split"或"unix")
- scoringMetric:评估指标(根据问题类型自动选择)
- scoringOptimizationStrategy:优化方向(最大化或最小化)
数据预处理开关配置
AutoML-Toolkit 提供了丰富的数据预处理选项:
1. 空值填充(默认开启)
- 支持数值型和字符型数据
- 提供多种填充策略选择
2. 零方差特征过滤(默认开启)
- 自动移除无信息增益的特征
3. 异常值过滤(默认关闭)
- 支持自动或手动设置过滤阈值
- 可选择单边或双边过滤
4. Pearson相关性过滤(默认关闭)
- 基于卡方检验评估特征与标签的相关性
- 支持p值、pearson统计量和自由度三种评估模式
最佳实践建议
- 对于分类问题,建议使用"areaUnderROC"或"areaUnderPR"作为评估指标
- 日期时间字段处理推荐使用"split"模式以获得更好的特征表达
- 空值填充功能应始终保持开启以避免运行时异常
- 零方差特征过滤能显著提高效率,建议保持开启
- 异常值过滤仅建议在探索性分析阶段使用
总结
AutoML-Toolkit 为Spark用户提供了强大的自动化机器学习能力,通过灵活的配置选项和分层API设计,既能满足快速原型开发的需求,也能支持复杂的定制化场景。其集成的数据预处理和特征工程功能大大降低了机器学习项目的入门门槛,而基于遗传算法的分布式超参数调优则确保了模型性能的最优化。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
445
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
823
398
Ascend Extension for PyTorch
Python
251
285
React Native鸿蒙化仓库
JavaScript
277
329
暂无简介
Dart
702
165
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
141
51
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.24 K
679
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
557
111