CVAT升级后图像访问与模型运行问题的分析与解决
问题背景
在将CVAT(Computer Vision Annotation Tool)从2.21.2版本升级到2.31.0版本后,用户遇到了两个主要问题:
- 系统频繁出现"Could not fetch requests from the server"的错误提示
- 无法运行Nuclio提供的模型功能,尽管这些模型在界面中可见
这些问题不仅影响了用户体验,还导致了工作流程的中断。本文将详细分析问题原因并提供解决方案。
问题现象分析
服务器请求失败错误
升级后,用户在登录系统或执行任务操作(如创建/删除任务)时,会收到以下错误信息:
Could not fetch requests from the server
<!doctype html> <html lang="en"> <head> <title>Server Error (500)</title> </head> <body> <h1>Server Error (500)</h1><p></p> </body> </html>
图像访问问题
更严重的是,升级前创建的任务中的图像无法被访问,而新创建的任务则没有这个问题。具体表现为:
- 尝试访问旧任务图像时出现"TypeError: i is undefined"的JavaScript错误
- 系统日志中频繁出现"WARNING django.request: Too Many Requests"的警告信息
模型功能失效
虽然Nuclio提供的模型在CVAT界面中可见,但无法实际运行,这与升级前的正常行为形成对比。
根本原因
经过深入分析,这些问题主要由以下因素导致:
-
Chunk处理机制变更:2.31.0版本对图像数据的chunk处理方式进行了重大改进,导致与旧版本创建的任务不兼容。
-
请求队列堆积:由于图像访问问题导致大量请求被阻塞,进而触发了服务器的请求限制机制,表现为"Too Many Requests"警告。
-
级联效应:请求队列的堆积又间接影响了模型运行功能,因为系统资源被大量无效请求占用。
解决方案
1. 清理Redis缓存
执行以下命令清理Redis中的临时数据:
docker exec -it cvat_redis_inmem redis-cli flushall
这一步骤可以解决因缓存不一致导致的各类问题。
2. 检查并修复Chunk Worker
通过检查cvat_worker_chunks
容器的日志,发现并解决了chunk处理的问题:
docker logs cvat_worker_chunks
根据日志中的具体错误信息,采取相应的修复措施。在本次案例中,修复后系统能够正常访问升级前创建的任务图像。
3. 系统重启
完成上述修复后,建议重启整个CVAT系统以确保所有组件都处于一致状态:
docker-compose down && docker-compose up -d
问题关联性
这三个看似独立的问题实际上存在紧密的因果关系:
- Chunk处理问题 → 图像访问失败
- 图像访问失败 → 请求堆积
- 请求堆积 → 服务器过载 → 模型功能不可用
- 服务器过载 → "Could not fetch requests"错误
因此,解决核心的chunk处理问题后,其他问题也随之消失。
预防措施
为避免今后升级时出现类似问题,建议:
- 升级前备份:在进行大版本升级前,完整备份数据库和重要数据。
- 测试环境验证:先在测试环境中验证升级过程,确认无重大问题后再在生产环境实施。
- 查阅变更日志:仔细阅读版本间的变更说明,特别是涉及数据存储格式变更的内容。
- 分阶段升级:对于关键系统,考虑分阶段升级而非一次性跨越多个版本。
总结
本次CVAT升级问题的解决过程展示了系统组件间复杂的依赖关系。通过系统日志分析和逐步排查,最终定位到核心问题在于chunk处理机制的变更。这一案例也提醒我们,在进行系统升级时,不仅要关注新功能的引入,还需要特别注意数据兼容性和架构变更可能带来的影响。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~059CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









