Atomic Agents项目中关于异步生成器的技术解析
2025-06-24 19:13:10作者:谭伦延
异步生成器在Atomic Agents项目中的应用与问题
在Python异步编程中,生成器(Generator)和异步生成器(AsyncGenerator)是两种不同的概念,它们在Atomic Agents项目中的使用需要特别注意。本文将深入分析项目中遇到的相关问题及其解决方案。
问题背景
在Atomic Agents项目中,当开发者尝试使用run_async方法时,会遇到类型错误提示:"'async for' requires an object with aiter method, got generator"。这个错误表明代码中尝试对普通生成器使用异步迭代,而Python解释器期望的是一个异步生成器。
技术原理
Python中的生成器和异步生成器有以下关键区别:
-
普通生成器(Generator):
- 使用
yield关键字产生值 - 通过
__iter__和__next__方法实现迭代 - 适用于同步代码环境
- 使用
-
异步生成器(AsyncGenerator):
- 使用
async def和yield组合定义 - 通过
__aiter__和__anext__方法实现异步迭代 - 必须在异步环境中使用
async for进行迭代
- 使用
项目中的具体问题
在Atomic Agents项目中,create_partial方法配合stream=True参数会返回一个普通生成器(Generator[T]),而不是异步生成器。然而,开发者可能在异步上下文中错误地使用了async for来迭代这个生成器,导致了类型不匹配的错误。
正确的做法应该是:
- 在同步代码中使用普通
for循环迭代生成器 - 或者在异步代码中使用
AsyncOpenAI客户端获取真正的异步生成器
解决方案
开发者需要注意以下几点:
-
客户端选择:
- 使用
openai.AsyncOpenAI客户端获取真正的异步生成器 - 普通
OpenAI客户端返回的是同步生成器
- 使用
-
迭代方式:
- 对于同步生成器,使用普通
for循环 - 对于异步生成器,使用
async for循环
- 对于同步生成器,使用普通
-
代码结构:
# 正确的异步使用方式 async for partial in agent.run_async(user_input): console.clear() console.print(partial)
最佳实践建议
- 明确区分同步和异步上下文
- 根据使用的客户端类型选择合适的迭代方式
- 在文档中清楚地注明返回类型是生成器还是异步生成器
- 在代码中添加类型提示,帮助开发者理解接口的期望行为
通过理解这些概念和遵循最佳实践,开发者可以避免类似的类型错误,并编写出更健壮的异步代码。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
246
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
313
React Native鸿蒙化仓库
JavaScript
262
324
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
330
137