Kener项目3.2.0版本发布:监控功能安全性与易用性全面升级
Kener是一个现代化的监控系统,专注于提供灵活、安全的监控解决方案。它支持多种监控类型,包括API监控、TCP监控和Ping监控等,允许用户通过自定义评估函数来实现复杂的监控逻辑。在最新发布的3.2.0版本中,Kener对监控评估功能进行了重大改进,显著提升了安全性和易用性。
安全评估机制重构
在之前的版本中,Kener使用JavaScript的eval()函数来执行用户自定义的监控评估逻辑。虽然eval()功能强大,但它存在严重的安全隐患,因为它可以执行任意代码,可能导致代码注入攻击。
3.2.0版本彻底重构了这一机制,改用更安全的Function()构造函数来替代eval()。Function()构造函数在沙盒环境中创建函数,不会自动访问当前作用域,从而大大降低了安全风险。这种改变不仅提高了系统的整体安全性,还保持了原有的灵活性。
API监控功能增强
API监控是Kener的核心功能之一,新版本对其进行了多项改进:
-
原始响应数据直接传递:不再需要base64编码/解码步骤,评估函数现在可以直接接收原始响应数据,简化了处理逻辑并提高了性能。
-
模块化支持:新增了
modules参数,允许评估函数直接使用预加载的模块。当前版本内置了cheerio模块,这是一个流行的HTML解析库,特别适合处理网页内容。 -
参数结构调整:评估函数的参数从
(statusCode, responseTime, responseDataBase64)变为(statusCode, responseTime, responseRaw, modules),使API更加直观。
这些改进使得编写API监控评估函数更加简单高效。例如,现在可以直接使用cheerio解析HTML响应,而不需要手动安装和加载这个库:
(async function (statusCode, responseTime, responseRaw, modules) {
const $ = modules.cheerio.load(responseRaw);
return $('title').text().includes('Expected Title');
})
TCP和Ping监控简化
对于TCP和Ping监控,新版本同样进行了简化:
-
直接数据访问:评估函数现在直接接收ping/TCP结果数组,不再需要通过base64编码传输数据。
-
参数简化:评估函数的参数从
(responseDataBase64)简化为(arrayOfPings),减少了不必要的解码步骤。 -
更好的错误处理:新增了对无效评估函数的检测和错误处理机制,提高了系统的稳定性。
这些改进使得编写TCP/Ping监控评估函数更加直观:
(async function (arrayOfPings) {
// 计算平均延迟
const sum = arrayOfPings.reduce((a, b) => a + b, 0);
const avg = sum / arrayOfPings.length;
return avg < 100; // 返回是否平均延迟小于100ms
})
迁移指南
对于现有用户,升级到3.2.0版本需要根据监控类型调整自定义评估函数:
API监控迁移
旧版本格式:
(async function (statusCode, responseTime, responseDataBase64) {
const resp = atob(responseDataBase64);
// 处理逻辑
})
新版本格式:
(async function (statusCode, responseTime, responseRaw, modules) {
// responseRaw已经是解码后的数据
// 可以使用modules.cheerio进行HTML解析
// 处理逻辑
})
TCP/Ping监控迁移
旧版本格式:
(async function (responseDataBase64) {
let arrayOfPings = JSON.parse(atob(responseDataBase64));
// 处理逻辑
})
新版本格式:
(async function (arrayOfPings) {
// arrayOfPings已经是解析后的数组
// 处理逻辑
})
总结
Kener 3.2.0版本通过重构评估机制、简化API和增强监控功能,为用户带来了更安全、更易用的监控体验。这些改进不仅提升了系统的安全性,还使自定义监控逻辑的编写更加直观和高效。对于现有用户,虽然需要进行一些迁移工作,但新版本带来的好处值得这一投入。
随着监控在现代IT系统中的重要性日益增加,Kener的这些改进使其成为一个更加可靠和强大的监控解决方案,适用于各种规模的部署环境。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00