Parseable项目:支持自定义时间列的查询API增强方案
在日志和事件数据处理系统中,时间戳字段是查询和分析的关键维度。Parseable作为一个开源的日志存储和分析平台,近期对其查询API进行了重要增强,允许用户自定义时间列,而不再局限于系统默认的p_timestamp字段。这一改进显著提升了平台的灵活性和适用性。
背景与需求
传统日志系统中,数据通常会被自动附加一个接收时间戳。但在实际业务场景中,很多事件数据本身包含更重要的业务时间戳,例如:
- 订单系统中的下单时间
- 物联网设备上报的传感器采集时间
- 应用日志中的事件发生时间
强制使用系统接收时间作为查询维度,可能导致业务分析的时间维度不准确。Parseable的这项增强正是为了解决这一问题。
技术实现方案
Parseable通过以下两个层面的改进实现了自定义时间列功能:
1. 数据摄入层扩展
在数据摄入API中新增了时间列配置选项。当用户创建或更新流(stream)配置时,可以指定一个字段作为主时间列。系统会基于此列:
- 构建时间分区目录结构
- 创建优化的时间索引
- 生成元数据目录
这种设计既保持了Parseable原有的高效存储结构,又增加了业务时间维度的支持。
2. 查询层优化
查询API的startTime和endTime参数现在可以自动适配用户定义的时间列。系统会智能地将时间范围过滤条件应用到指定的业务时间字段上,而不是硬编码到系统接收时间。
高级特性与未来方向
这一基础改进为Parseable带来了更多可能性:
-
多时间列支持:未来可扩展为支持多个时间维度,如同时支持业务时间和系统接收时间。
-
自定义分区策略:基于业务时间列的分区策略可以进一步优化查询性能,例如按小时、按天或按业务周期分区。
-
混合时间查询:支持同时基于业务时间和系统时间的复合查询条件,满足更复杂的分析需求。
应用价值
这一改进为不同场景带来了显著价值:
-
业务事件分析:电商平台可以准确分析促销活动期间的真实下单时间分布。
-
物联网数据处理:传感器数据可以按其实际采集时间序列进行分析,不受网络传输延迟影响。
-
分布式系统追踪:跨服务的调用链可以基于统一的事件时间进行关联分析。
Parseable的这一增强使其在业务场景适应性上迈出了重要一步,为各类时间敏感型数据分析提供了更专业的支持。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00