Parseable项目:支持自定义时间列的查询API增强方案
在日志和事件数据处理系统中,时间戳字段是查询和分析的关键维度。Parseable作为一个开源的日志存储和分析平台,近期对其查询API进行了重要增强,允许用户自定义时间列,而不再局限于系统默认的p_timestamp字段。这一改进显著提升了平台的灵活性和适用性。
背景与需求
传统日志系统中,数据通常会被自动附加一个接收时间戳。但在实际业务场景中,很多事件数据本身包含更重要的业务时间戳,例如:
- 订单系统中的下单时间
- 物联网设备上报的传感器采集时间
- 应用日志中的事件发生时间
强制使用系统接收时间作为查询维度,可能导致业务分析的时间维度不准确。Parseable的这项增强正是为了解决这一问题。
技术实现方案
Parseable通过以下两个层面的改进实现了自定义时间列功能:
1. 数据摄入层扩展
在数据摄入API中新增了时间列配置选项。当用户创建或更新流(stream)配置时,可以指定一个字段作为主时间列。系统会基于此列:
- 构建时间分区目录结构
- 创建优化的时间索引
- 生成元数据目录
这种设计既保持了Parseable原有的高效存储结构,又增加了业务时间维度的支持。
2. 查询层优化
查询API的startTime和endTime参数现在可以自动适配用户定义的时间列。系统会智能地将时间范围过滤条件应用到指定的业务时间字段上,而不是硬编码到系统接收时间。
高级特性与未来方向
这一基础改进为Parseable带来了更多可能性:
-
多时间列支持:未来可扩展为支持多个时间维度,如同时支持业务时间和系统接收时间。
-
自定义分区策略:基于业务时间列的分区策略可以进一步优化查询性能,例如按小时、按天或按业务周期分区。
-
混合时间查询:支持同时基于业务时间和系统时间的复合查询条件,满足更复杂的分析需求。
应用价值
这一改进为不同场景带来了显著价值:
-
业务事件分析:电商平台可以准确分析促销活动期间的真实下单时间分布。
-
物联网数据处理:传感器数据可以按其实际采集时间序列进行分析,不受网络传输延迟影响。
-
分布式系统追踪:跨服务的调用链可以基于统一的事件时间进行关联分析。
Parseable的这一增强使其在业务场景适应性上迈出了重要一步,为各类时间敏感型数据分析提供了更专业的支持。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00