Optax项目中Adam优化器的eps_root参数设置技巧
在深度学习的优化过程中,Adam优化器因其优秀的性能表现而广受欢迎。然而,当我们在元学习(Meta-Learning)等需要高阶梯度计算的场景中使用Adam优化器时,可能会遇到梯度计算出现NaN值的问题。本文将深入探讨这一现象的原因及解决方案。
问题背景
在模型无关元学习(Model-Agnostic Meta-Learning, MAML)等算法中,我们需要通过优化器的更新步骤进行反向传播。当使用Optax库中的Adam优化器作为内循环优化器时,默认参数设置可能会导致meta-gradient计算过程中出现数值不稳定问题,具体表现为NaN值。
根本原因分析
这个问题源于Adam优化器的自适应学习率机制。Adam通过计算梯度的一阶矩估计(均值)和二阶矩估计(未中心化的方差)来调整每个参数的学习率。在计算二阶矩估计时,涉及到一个分母项,当这个值趋近于零时,会导致数值不稳定。
解决方案
Optax团队建议通过设置eps_root参数来解决这个问题。eps_root是一个添加到分母中的小常数,用于防止除以零的情况发生。经过实践验证,将eps_root设置为1e-8是一个合理的选择,它能够在保持优化器性能的同时,有效避免数值不稳定问题。
实践建议
对于元学习任务,特别是需要计算高阶梯度的情况,建议显式地设置Adam优化器的eps_root参数。在Optax中,可以通过以下方式配置:
optimizer = optax.adam(learning_rate, eps_root=1e-8)
这个设置不仅适用于MAML算法,也适用于其他需要优化器可微分的场景,如优化器学习(Learning to Learn)等任务。
深入理解
eps_root参数的作用类似于传统Adam优化器中的epsilon参数,但它专门针对二阶矩估计的平方根计算部分。在标准Adam实现中,更新公式的分母包含一个平方根项,eps_root就是添加到这个平方根中的小常数。这个细微但重要的调整使得优化器在反向传播过程中更加稳定。
结论
在需要微分优化器更新的高级深度学习应用中,正确配置Adam优化器的数值稳定性参数至关重要。通过将eps_root设置为1e-8,我们可以在保持优化器原有性能的同时,确保梯度计算的数值稳定性。这一技巧对于元学习和相关领域的研究者和实践者都具有重要的参考价值。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00