Optax项目中Adam优化器的eps_root参数设置技巧
在深度学习的优化过程中,Adam优化器因其优秀的性能表现而广受欢迎。然而,当我们在元学习(Meta-Learning)等需要高阶梯度计算的场景中使用Adam优化器时,可能会遇到梯度计算出现NaN值的问题。本文将深入探讨这一现象的原因及解决方案。
问题背景
在模型无关元学习(Model-Agnostic Meta-Learning, MAML)等算法中,我们需要通过优化器的更新步骤进行反向传播。当使用Optax库中的Adam优化器作为内循环优化器时,默认参数设置可能会导致meta-gradient计算过程中出现数值不稳定问题,具体表现为NaN值。
根本原因分析
这个问题源于Adam优化器的自适应学习率机制。Adam通过计算梯度的一阶矩估计(均值)和二阶矩估计(未中心化的方差)来调整每个参数的学习率。在计算二阶矩估计时,涉及到一个分母项,当这个值趋近于零时,会导致数值不稳定。
解决方案
Optax团队建议通过设置eps_root参数来解决这个问题。eps_root是一个添加到分母中的小常数,用于防止除以零的情况发生。经过实践验证,将eps_root设置为1e-8是一个合理的选择,它能够在保持优化器性能的同时,有效避免数值不稳定问题。
实践建议
对于元学习任务,特别是需要计算高阶梯度的情况,建议显式地设置Adam优化器的eps_root参数。在Optax中,可以通过以下方式配置:
optimizer = optax.adam(learning_rate, eps_root=1e-8)
这个设置不仅适用于MAML算法,也适用于其他需要优化器可微分的场景,如优化器学习(Learning to Learn)等任务。
深入理解
eps_root参数的作用类似于传统Adam优化器中的epsilon参数,但它专门针对二阶矩估计的平方根计算部分。在标准Adam实现中,更新公式的分母包含一个平方根项,eps_root就是添加到这个平方根中的小常数。这个细微但重要的调整使得优化器在反向传播过程中更加稳定。
结论
在需要微分优化器更新的高级深度学习应用中,正确配置Adam优化器的数值稳定性参数至关重要。通过将eps_root设置为1e-8,我们可以在保持优化器原有性能的同时,确保梯度计算的数值稳定性。这一技巧对于元学习和相关领域的研究者和实践者都具有重要的参考价值。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C040
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0120
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00