首页
/ Optax项目中Adam优化器的eps_root参数设置技巧

Optax项目中Adam优化器的eps_root参数设置技巧

2025-07-07 05:10:28作者:尤峻淳Whitney

在深度学习的优化过程中,Adam优化器因其优秀的性能表现而广受欢迎。然而,当我们在元学习(Meta-Learning)等需要高阶梯度计算的场景中使用Adam优化器时,可能会遇到梯度计算出现NaN值的问题。本文将深入探讨这一现象的原因及解决方案。

问题背景

在模型无关元学习(Model-Agnostic Meta-Learning, MAML)等算法中,我们需要通过优化器的更新步骤进行反向传播。当使用Optax库中的Adam优化器作为内循环优化器时,默认参数设置可能会导致meta-gradient计算过程中出现数值不稳定问题,具体表现为NaN值。

根本原因分析

这个问题源于Adam优化器的自适应学习率机制。Adam通过计算梯度的一阶矩估计(均值)和二阶矩估计(未中心化的方差)来调整每个参数的学习率。在计算二阶矩估计时,涉及到一个分母项,当这个值趋近于零时,会导致数值不稳定。

解决方案

Optax团队建议通过设置eps_root参数来解决这个问题。eps_root是一个添加到分母中的小常数,用于防止除以零的情况发生。经过实践验证,将eps_root设置为1e-8是一个合理的选择,它能够在保持优化器性能的同时,有效避免数值不稳定问题。

实践建议

对于元学习任务,特别是需要计算高阶梯度的情况,建议显式地设置Adam优化器的eps_root参数。在Optax中,可以通过以下方式配置:

optimizer = optax.adam(learning_rate, eps_root=1e-8)

这个设置不仅适用于MAML算法,也适用于其他需要优化器可微分的场景,如优化器学习(Learning to Learn)等任务。

深入理解

eps_root参数的作用类似于传统Adam优化器中的epsilon参数,但它专门针对二阶矩估计的平方根计算部分。在标准Adam实现中,更新公式的分母包含一个平方根项,eps_root就是添加到这个平方根中的小常数。这个细微但重要的调整使得优化器在反向传播过程中更加稳定。

结论

在需要微分优化器更新的高级深度学习应用中,正确配置Adam优化器的数值稳定性参数至关重要。通过将eps_root设置为1e-8,我们可以在保持优化器原有性能的同时,确保梯度计算的数值稳定性。这一技巧对于元学习和相关领域的研究者和实践者都具有重要的参考价值。

登录后查看全文
热门项目推荐

项目优选

收起
kernelkernel
deepin linux kernel
C
22
6
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
163
2.05 K
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
leetcodeleetcode
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
60
16
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
199
279
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
951
557
ShopXO开源商城ShopXO开源商城
🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
96
15
apintoapinto
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
0
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
77
70
giteagitea
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
17
0