BoTorch v0.13.0 版本发布:强化贝叶斯优化与高斯过程建模能力
BoTorch 是基于 PyTorch 的贝叶斯优化库,专注于提供高效的优化算法和高斯过程建模工具。最新发布的 v0.13.0 版本带来了一系列重要更新,包括网站升级、新模型引入以及多项功能增强,进一步提升了其在自动机器学习(AutoML)和实验设计等领域的应用价值。
网站升级与用户体验优化
本次版本对 BoTorch 官方网站进行了全面升级,采用了 Docusaurus v3 框架,并将 API 参考文档迁移至 ReadTheDocs 平台。这一改进显著提升了文档的可读性和访问速度。特别值得一提的是,教程部分新增了"在 Colab 中打开"选项,用户可以直接在 Google Colab 环境中运行和修改教程代码,大大降低了学习门槛。
新增高斯过程模型
1. RobustRelevancePursuitSingleTaskGP 模型
该模型通过自适应识别异常值并利用贝叶斯模型选择,提供了一种鲁棒的高斯过程建模方法。其核心思想是在建模过程中自动检测并处理异常数据点,同时通过贝叶斯方法选择最优模型结构,特别适用于存在噪声或异常值的实验数据场景。
2. LatentKroneckerGP 模型
针对部分观测网格数据(如超参数优化中部分完成的学习曲线)的建模需求,LatentKroneckerGP 提供了一种高效的解决方案。该模型利用 Kronecker 结构实现计算效率的提升,能够有效处理大规模但部分观测的数据集,在 AutoML 应用中表现出色。
3. MAP-SAAS 模型
MAP-SAAS(Sparse Axis-Aligned Subspace)模型采用稀疏轴对齐子空间先验,通过最大后验概率(MAP)估计进行模型拟合。这种方法特别适用于高维输入空间中只有少量维度真正影响输出的情况,能够自动识别相关特征,提高模型解释性。
功能增强与优化
混合空间优化
新增的 optimize_acqf_mixed_alternating
函数支持在混合离散和连续空间中进行优化,为实际问题中常见的混合参数类型提供了更灵活的优化方案。该函数采用交替优化策略,在离散和连续空间之间迭代搜索最优解。
输入输出变换增强
BatchBroadcastedTransformList
:支持将输入变换列表广播到批量形状上InteractionFeatures
:新增交互特征输入变换StratifiedStandardize
:分层标准化输出变换Normalize
变换新增center
参数,提供更灵活的数据标准化选项
采样与优化改进
- 更高效的
KroneckerMultiTaskGP
采样实现 initialize_q_batch
方法现在同时返回候选点和对应的获取函数值- 支持在
get_optimal_samples
和optimize_posterior_samples
中使用后验变换 - 改进了离散优化中的约束处理和避免点支持
兼容性与性能优化
v0.13.0 版本要求 GPyTorch 1.14 和 linear_operator 0.6 作为依赖项。同时移除了对 Anaconda 官方包的支持,并更新了优化例程以更好地支持新版 SciPy。特别值得注意的是,minimize_with_timeout
现在使用 threadpoolctl
来防止 CPU 过度分配,提高了多线程环境下的稳定性。
弃用功能
- 移除了
HeteroskedasticSingleTaskGP
模型 - 不再支持
FixedNoiseDataset
- 移除了对传统格式非线性约束的支持
- 在信息论获取函数中移除了
maximize
选项
应用前景
本次更新使 BoTorch 在以下几个方面展现出更强的应用潜力:
- 鲁棒优化:新增的 RobustRelevancePursuit 模型使贝叶斯优化在存在异常值的场景中更加可靠。
- 高效建模:LatentKroneckerGP 和 MAP-SAAS 模型分别针对部分观测数据和高维稀疏问题提供了高效解决方案。
- 用户体验:网站升级和 Colab 集成显著降低了新用户的学习曲线。
- 灵活性:混合空间优化和增强的变换功能使框架能适应更复杂的问题设置。
这些改进共同推动了 BoTorch 在自动化机器学习、实验设计和参数优化等领域的应用边界,为研究人员和工程师提供了更加强大且易用的工具。
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00HunyuanWorld-Mirror
混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03Spark-Scilit-X1-13B
FLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选









