CHAMP项目微调实践:解决运动模块在自定义数据集上的异常问题
2025-06-15 00:32:36作者:劳婵绚Shirley
问题背景
在使用CHAMP项目进行人体姿态估计时,研究人员发现当尝试在全身姿态数据集(如zjumocap等)上进行微调时,模型在验证阶段出现了异常情况。具体表现为加载预训练权重后,验证结果呈现噪声状输出,而有趣的是,当不加载运动模块(motion_module)时,结果反而看起来正常。
问题分析
通过进一步的实验和排查,研究人员发现问题的根源在于帧数的设置。当保持原始帧数不变时,模型表现恢复正常。这表明运动模块对输入序列的时序长度非常敏感,任何对帧数的修改都可能导致模块无法正常工作。
技术原理
CHAMP项目中的运动模块是专门设计用于处理时序信息的神经网络组件。它可能采用了以下几种技术之一或组合:
- 时序卷积网络(TCN):通过扩张卷积捕捉不同时间尺度的特征
- 自注意力机制:建模长距离的时序依赖关系
- 循环神经网络:传统的RNN或LSTM结构处理序列数据
这些结构通常对输入序列的长度有特定要求或假设,特别是在使用了位置编码或固定大小的卷积核时。改变输入长度可能导致特征对齐出现问题,从而产生噪声状输出。
解决方案
针对这一问题,我们建议采取以下解决方案:
-
保持原始帧数:在进行微调时,使用与预训练相同的帧数设置
-
帧数适配:如果必须改变帧数,可以考虑以下方法:
- 使用插值或下采样调整自定义数据集的帧数
- 修改运动模块的结构以适应新的帧数
- 重新训练运动模块而不仅仅是微调
-
渐进式微调:先冻结运动模块进行训练,待其他部分收敛后再解冻运动模块进行微调
实践建议
对于希望在自定义数据集上微调CHAMP模型的研究人员,我们提供以下实践建议:
- 数据预处理:确保自定义数据集的格式、帧率和姿态表示与原始训练数据一致
- 学习率设置:使用较小的学习率进行微调,特别是对于运动模块
- 监控指标:除了验证损失外,还应关注时序一致性等特定指标
- 消融实验:通过控制变量法确定问题具体出现在哪个组件
总结
CHAMP项目作为一个先进的生成式视觉模型,在人体姿态估计任务上表现出色。然而,在进行自定义数据集微调时,需要特别注意时序相关模块的参数设置。通过理解运动模块的工作原理和正确处理帧数问题,研究人员可以成功地将模型适配到新的数据领域,获得理想的姿态估计结果。这一经验也提醒我们,在迁移学习中,时序模型的微调需要格外谨慎,任何对输入结构的修改都可能对模型性能产生重大影响。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
405
3.14 K
Ascend Extension for PyTorch
Python
226
251
暂无简介
Dart
672
159
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
319
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
657
React Native鸿蒙化仓库
JavaScript
262
325
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
220
仓颉编译器源码及 cjdb 调试工具。
C++
135
868