EasyEdit项目中的MEND方法在Llama-7b模型上的设备一致性挑战
在EasyEdit项目中,研究人员发现当使用MEND方法对Llama-7b模型进行知识编辑时,遇到了一个关键的设备一致性错误。这个错误表现为输入张量和模型模块不在同一个GPU设备上,具体报错信息显示存在cuda:3和cuda:0两个不同的设备。
深入分析这个问题,其根源在于MEND方法的实现机制。MEND(Model Editing Networks)作为一种模型编辑方法,其核心是通过学习模型参数的梯度变换来实现知识更新。在计算过程中,需要将输入特征与梯度信息进行拼接并送入多层感知机(MLP)进行处理。然而,当模型采用多GPU并行(model parallelism)时,不同的模型层可能分布在不同的GPU设备上,这就导致了设备不一致的问题。
值得注意的是,这个问题在MiniGPT-4等多模态编辑场景中并未出现。这是因为MiniGPT-4的编辑流程与纯语言模型有所不同,其输入处理和梯度计算都在统一的设备环境中完成。
针对这个问题,EasyEdit项目组给出了明确的解决方案:MEND方法目前不支持模型并行计算,用户需要在单GPU环境下运行Llama-7b的编辑任务。具体操作是确保配置文件中将model_parallel参数设置为false。
从更广泛的角度来看,这个问题揭示了模型编辑方法在分布式计算环境中的兼容性挑战。不同的编辑方法对计算资源的利用方式存在差异,MEND由于其特定的梯度变换机制,需要保证所有计算都在同一设备上完成。而其他编辑方法可能采用不同的参数更新策略,因此对模型并行的支持情况也不尽相同。
对于希望使用EasyEdit进行大模型编辑的研究人员,建议在开始编辑任务前,仔细了解所选编辑方法对计算环境的要求。特别是当处理像Llama-7b这样的大型模型时,设备配置和并行策略的选择会直接影响编辑过程的成功与否。项目组也表示将持续完善文档,明确标注各编辑方法对模型并行的支持情况,以帮助用户更好地规划实验环境。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00